Skip to content

Code for testing the native float16 matrix multiplication performance on Tesla P100 and V100 GPU based on cublasHgemm

License

Notifications You must be signed in to change notification settings

zhaoying9105/cublasHgemm-P100

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

fp16-cublasHgemm-test

A simple benchmarking code of the half-precision (float16) performance on Tesla P100 (sm_60) or V100 (sm_70) GPU based on cublasHgemm.

Build and Run

The code does C=alpha*A*B+beta*C on GPU with different sizes of square matrices A, B and C. Shape A is (m,k). Shape B is (k,n). Shape C is (m,n).

To test float16 matrix multiplication,

$ make
$ ./hgemm

Comment line 11 in hgemm.cu to test float32 matrix multiplication.

Tesla P100 Example Testing Result

nvcc hgemm.cu -lcublas --std=c++11 -arch=sm_60  -o hgemm

running cublasHgemm test

running with min_m_k_n: 2 max_m_k_n: 32768 repeats: 10
allocating device variables
float16; size 2 average: 7.69632e-05 s 
float16; size 4 average: 1.34304e-05 s 
float16; size 8 average: 3.49152e-05 s 
float16; size 16 average: 1.6272e-05 s 
float16; size 32 average: 1.91808e-05 s 
float16; size 64 average: 2.52672e-05 s 
float16; size 128 average: 2.48512e-05 s 
float16; size 256 average: 6.52992e-05 s 
float16; size 512 average: 0.000111104 s 
float16; size 1024 average: 0.000275123 s 
float16; size 2048 average: 0.00155046 s 
float16; size 4096 average: 0.00934949 s 
float16; size 8192 average: 0.0659167 s 
float16; size 16384 average: 0.508014 s 
float16; size 32768 average: 4.01786 s 

nvcc hgemm.cu -lcublas --std=c++11 -arch=sm_60  -o hgemm

running cublasSgemm test

running with min_m_k_n: 2 max_m_k_n: 32768 repeats: 10
allocating device variables
float32; size 2 average: 5.21152e-05 s 
float32; size 4 average: 2.06112e-05 s 
float32; size 8 average: 7.1616e-06 s 
float32; size 16 average: 5.3248e-06 s 
float32; size 32 average: 4.624e-06 s 
float32; size 64 average: 1.128e-05 s 
float32; size 128 average: 2.37504e-05 s 
float32; size 256 average: 4.83776e-05 s 
float32; size 512 average: 0.000117616 s 
float32; size 1024 average: 0.000599805 s 
float32; size 2048 average: 0.0026987 s 
float32; size 4096 average: 0.0180615 s 
float32; size 8192 average: 0.128823 s 
float32; size 16384 average: 1.00408 s 
float32; size 32768 average: 8.07247 s 

Tesla V100 Example Testing Result

nvcc hgemm.cu -lcublas --std=c++11 -arch=sm_70  -o hgemm

running cublasHgemm test

running with min_m_k_n: 2 max_m_k_n: 32768 repeats: 10
allocating device variables
float16; size 2 average: 0.000115712 s
float16; size 4 average: 6.76864e-05 s
float16; size 8 average: 7.03488e-05 s
float16; size 16 average: 7.08608e-05 s
float16; size 32 average: 7.8336e-05 s
float16; size 64 average: 8.16128e-05 s
float16; size 128 average: 8.7552e-05 s
float16; size 256 average: 0.000126157 s
float16; size 512 average: 0.000196301 s
float16; size 1024 average: 0.000361267 s
float16; size 2048 average: 0.00156385 s
float16; size 4096 average: 0.00853637 s
float16; size 8192 average: 0.0443268 s
float16; size 16384 average: 0.307294 s
float16; size 32768 average: 2.30823 s

nvcc hgemm.cu -lcublas --std=c++11 -arch=sm_70  -o hgemm

running cublasSgemm test

running with min_m_k_n: 2 max_m_k_n: 32768 repeats: 10
allocating device variables
float32; size 2 average: 6.7584e-05 s 
float32; size 4 average: 6.53312e-05 s 
float32; size 8 average: 6.47168e-05 s 
float32; size 16 average: 6.44096e-05 s 
float32; size 32 average: 7.29088e-05 s 
float32; size 64 average: 7.4752e-05 s 
float32; size 128 average: 8.06912e-05 s 
float32; size 256 average: 0.000160768 s 
float32; size 512 average: 0.000111923 s 
float32; size 1024 average: 0.000254464 s 
float32; size 2048 average: 0.00134257 s 
float32; size 4096 average: 0.00944916 s 
float32; size 8192 average: 0.0721418 s 
float32; size 16384 average: 0.573173 s 
float32; size 32768 average: 4.6143 s

Reference

About

Code for testing the native float16 matrix multiplication performance on Tesla P100 and V100 GPU based on cublasHgemm

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Cuda 57.0%
  • C++ 40.0%
  • Makefile 2.9%
  • Shell 0.1%