forked from wzhe06/Ad-papers
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
zhwang
committed
Mar 4, 2019
1 parent
e6c2e49
commit 0652a21
Showing
5 changed files
with
9 additions
and
9 deletions.
There are no files selected for viewing
Binary file added
BIN
+2.07 MB
CTR Prediction/[DIEN]Deep Interest Evolution Network for Click-Through Rate Prediction.pdf
Binary file not shown.
File renamed without changes.
File renamed without changes.
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,15 +1,15 @@ | ||
# 计算广告论文、学习资料、业界分享 | ||
动态更新工作中实现或者阅读过的计算广告相关论文、学习资料和业界分享,作为自己工作的总结,也希望能为计算广告相关行业的同学带来便利。 | ||
所有资料均来自于互联网,如有侵权,请联系_王喆_。同时欢迎对计算广告感兴趣的同学与我讨论相关问题,我的联系方式如下: | ||
所有资料均来自于互联网,如有侵权,请联系王喆。同时欢迎对计算广告感兴趣的同学与我讨论相关问题,我的联系方式如下: | ||
* Email: [email protected] | ||
* LinkedIn: [王喆的LinkedIn](https://www.linkedin.com/in/zhe-wang-profile/) | ||
* 知乎私信: [王喆的知乎](https://www.zhihu.com/people/wang-zhe-58) | ||
|
||
**会不断加入一些重要的计算广告相关论文和资料,并去掉一些过时的或者跟计算广告不太相关的论文** | ||
* `New!` [Image Matters- Visually modeling user behaviors using Advanced Model Server.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Image%20Matters-%20Visually%20modeling%20user%20behaviors%20using%20Advanced%20Model%20Server.pdf) <br /> | ||
阿里提出引入商品图像特征的(Deep Image CTR Model)CTR预估模型,并介绍其分布式机器学习框架AMS | ||
* `New!` [Deep Interest Network for Click-Through Rate Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20Interest%20Network%20for%20Click-Through%20Rate%20Prediction.pdf) <br /> | ||
阿里提出的深度兴趣网络(Deep Interest Network)CTR预估模型 | ||
* `New!` [Deep Interest Evolution Network for Click-Through Rate Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/%5BDIEN%5DDeep%20Interest%20Evolution%20Network%20for%20Click-Through%20Rate%20Prediction.pdf) <br /> | ||
阿里提出的深度兴趣网络(Deep Interest Network)最新改进DIEN | ||
|
||
**其他相关资源** | ||
* [张伟楠的RTB Papers列表](https://github.com/wnzhang/rtb-papers)<br /> | ||
|
@@ -37,15 +37,16 @@ Google的深度学习自动调参框架Vizier | |
### CTR Prediction | ||
作为计算广告的核心,CTR预估永远是研究的热点,下面每一篇都是非常流行的文章,推荐逐一精读 | ||
* [Deep Crossing- Web-Scale Modeling without Manually Crafted Combinatorial Features.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20Crossing-%20Web-Scale%20Modeling%20without%20Manually%20Crafted%20Combinatorial%20Features.pdf) <br /> | ||
* [[DIEN]Deep Interest Evolution Network for Click-Through Rate Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/%5BDIEN%5DDeep%20Interest%20Evolution%20Network%20for%20Click-Through%20Rate%20Prediction.pdf) <br /> | ||
* [Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Learning%20Piece-wise%20Linear%20Models%20from%20Large%20Scale%20Data%20for%20Ad%20Click%20Prediction.pdf) <br /> | ||
阿里提出的Large Scale Piece-wise Linear Model (LS-PLM) CTR预估模型 | ||
* [[GBDT+LR]Practical Lessons from Predicting Clicks on Ads at Facebook.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/%5BGBDT%2BLR%5DPractical%20Lessons%20from%20Predicting%20Clicks%20on%20Ads%20at%20Facebook.pdf) <br /> | ||
* [[FNN]Deep Learning over Multi-field Categorical Data.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/%5BFNN%5DDeep%20Learning%20over%20Multi-field%20Categorical%20Data.pdf) <br /> | ||
* [Entire Space Multi-Task Model_ An Effective Approach for Estimating Post-Click Conversion Rate.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Entire%20Space%20Multi-Task%20Model_%20An%20Effective%20Approach%20for%20Estimating%20Post-Click%20Conversion%20Rate.pdf) <br /> | ||
* [Deep Interest Network for Click-Through Rate Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20Interest%20Network%20for%20Click-Through%20Rate%20Prediction.pdf) <br /> | ||
* [Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Bid-aware%20Gradient%20Descent%20for%20Unbiased%20Learning%20with%20Censored%20Data%20in%20Display%20Advertising.pdf) <br /> | ||
RTB 中训练 CTR 模型数据集是赢得出价的广告,预测时的样本却是所有候选的广告,也就是训练集和测试集的分布不一致,这篇文章就是要消除这样的 bias | ||
* [[Multi-Task]An Overview of Multi-Task Learning in Deep Neural Networks.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/%5BMulti-Task%5DAn%20Overview%20of%20Multi-Task%20Learning%20in%20Deep%20Neural%20Networks.pdf) <br /> | ||
* [[DIN]Deep Interest Network for Click-Through Rate Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/%5BDIN%5DDeep%20Interest%20Network%20for%20Click-Through%20Rate%20Prediction.pdf) <br /> | ||
* [Ad Click Prediction a View from the Trenches.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Ad%20Click%20Prediction%20a%20View%20from%20the%20Trenches.pdf) <br /> | ||
Google大名鼎鼎的用FTRL解决CTR在线预估的工程文章,非常经典。 | ||
* [[PNN]Product-based Neural Networks for User Response Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/%5BPNN%5DProduct-based%20Neural%20Networks%20for%20User%20Response%20Prediction.pdf) <br /> | ||
|
@@ -129,29 +130,28 @@ PID控制的经典教程 | |
* [Real-Time Bidding by Reinforcement Learning in Display Advertising.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Bidding%20Strategy/Real-Time%20Bidding%20by%20Reinforcement%20Learning%20in%20Display%20Advertising.pdf) <br /> | ||
* [Combining Powers of Two Predictors in Optimizing Real-Time Bidding Strategy under Constrained Budget.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Bidding%20Strategy/Combining%20Powers%20of%20Two%20Predictors%20in%20Optimizing%20Real-Time%20Bidding%20Strategy%20under%20Constrained%20Budget.pdf) <br /> | ||
国立台湾大学的文章,介绍一种基于流量选择的计算广告竞价方法,有别于传统的CTR CPC的方法,我在实践中尝试过该方法,非常有效 | ||
* [Optimized Cost per Click in Taobao Display Advertising.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Bidding%20Strategy/Optimized%20Cost%20per%20Click%20in%20Taobao%20Display%20Advertising.pdf) <br /> | ||
淘宝搜索广告中 OCPC 模式的出价策略<br /> | ||
* [Real-Time Bidding Algorithms for Performance-Based Display Ad Allocation.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Bidding%20Strategy/Real-Time%20Bidding%20Algorithms%20for%20Performance-Based%20Display%20Ad%20Allocation.pdf) <br /> | ||
微软的一篇基于PID反馈控制的与效果相关的竞价算法 | ||
* [Deep Reinforcement Learning for Sponsored Search Real-time Bidding.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Bidding%20Strategy/Deep%20Reinforcement%20Learning%20for%20Sponsored%20Search%20Real-time%20Bidding.pdf) <br /> | ||
阿里妈妈搜索广告团队的论文,通过 Reinforcement Learning 探索实时出价问题<br /> | ||
* [Optimized Cost per Click in Taobao Display Advertising.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Bidding%20Strategy/Optimized%20Cost%20per%20Click%20in%20Taobao%20Display%20Advertising.pdf) <br /> | ||
淘宝搜索广告中 OCPC 模式的出价策略<br /> | ||
|
||
|
||
### Computational Advertising Architect | ||
广告系统的架构问题 | ||
* [Parameter Server for Distributed Machine Learning.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/Parameter%20Server%20for%20Distributed%20Machine%20Learning.pdf) <br /> | ||
* [[TensorFlow Whitepaper]TensorFlow- Large-Scale Machine Learning on Heterogeneous Distributed Systems.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/%5BTensorFlow%20Whitepaper%5DTensorFlow-%20Large-Scale%20Machine%20Learning%20on%20Heterogeneous%20Distributed%20Systems.pdf) <br /> | ||
* [大数据下的广告排序技术及实践.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/%E5%A4%A7%E6%95%B0%E6%8D%AE%E4%B8%8B%E7%9A%84%E5%B9%BF%E5%91%8A%E6%8E%92%E5%BA%8F%E6%8A%80%E6%9C%AF%E5%8F%8A%E5%AE%9E%E8%B7%B5.pdf) <br /> | ||
阿里妈妈的一篇广告排序问题的ppt,模型、训练、评估都有涉及,很有工程价值 | ||
* [美团机器学习 吃喝玩乐中的算法问题.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/%E7%BE%8E%E5%9B%A2%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%20%E5%90%83%E5%96%9D%E7%8E%A9%E4%B9%90%E4%B8%AD%E7%9A%84%E7%AE%97%E6%B3%95%E9%97%AE%E9%A2%98.pdf) <br /> | ||
美团王栋博士的一篇关于美团机器学习相关问题的介绍,介绍的比较全但比较粗浅,可以借此了解美团的一些机器学习问题 | ||
* [[Parameter Server]Scaling Distributed Machine Learning with the Parameter Server.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/%5BParameter%20Server%5DScaling%20Distributed%20Machine%20Learning%20with%20the%20Parameter%20Server.pdf) <br /> | ||
* [Display Advertising with Real-Time Bidding (RTB) and Behavioural Targeting.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/Display%20Advertising%20with%20Real-Time%20Bidding%20%28RTB%29%20and%20Behavioural%20Targeting.pdf) <br /> | ||
张伟楠博士的RTB过程所有相关算法的书,全而精,非常棒 | ||
* [A Comparison of Distributed Machine Learning Platforms.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/A%20Comparison%20of%20Distributed%20Machine%20Learning%20Platforms.pdf) <br /> | ||
* [Efficient Query Evaluation using a Two-Level Retrieval Process.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/Efficient%20Query%20Evaluation%20using%20a%20Two-Level%20Retrieval%20Process.pdf) <br /> | ||
搜索广告中经典的搜索算法 Wand(Weak AND) | ||
* [[TensorFlow Whitepaper]TensorFlow- A System for Large-Scale Machine Learning.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/%5BTensorFlow%20Whitepaper%5DTensorFlow-%20A%20System%20for%20Large-Scale%20Machine%20Learning.pdf) <br /> | ||
* [Scaling Distributed Machine Learning with the Parameter Server.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/Scaling%20Distributed%20Machine%20Learning%20with%20the%20Parameter%20Server.pdf) <br /> | ||
* [[Parameter Server]Parameter Server for Distributed Machine Learning.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/%5BParameter%20Server%5DParameter%20Server%20for%20Distributed%20Machine%20Learning.pdf) <br /> | ||
* [Overlapping Experiment Infrastructure More, Better, Faster Experimentation.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/Overlapping%20Experiment%20Infrastructure%20More%2C%20Better%2C%20Faster%20Experimentation.pdf) <br /> | ||
Google 一篇关于 A/B 测试框架的论文,涉及到如何切分流量以同时进行多个 A/B 测试,工程性很强 | ||
|
||
|