Skip to content
forked from DRL/blobtools

Modular command-line solution for visualisation, quality control and taxonomic partitioning of genome datasets

License

Notifications You must be signed in to change notification settings

zhou-ran/blobtools

 
 

Repository files navigation

BlobTools v1.1

A modular command-line solution for visualisation, quality control and taxonomic partitioning of genome datasets

Obtaining BlobTools

  • Option A: Download latest release
  • Option B: Clone repository
    git clone https://github.com/DRL/blobtools.git
    

Entering directory

cd blobtools

Install dependencies

  • Option A: Create Conda environment

    conda create -n blobtools
    conda activate blobtools
    conda install -c anaconda matplotlib docopt tqdm wget pyyaml git
    conda install -c bioconda pysam --update-deps
    

    Tip: Check if samtools exists by executing the command 'samtools' in the commandline. If samtools complains about dependencies, simply run the pysam install twice.

  • Option B: Install dependencies via PIP

    python setup.py install --user
    

Download NCBI taxdump and create nodesdb

wget ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/taxdump.tar.gz -P data/
tar zxf data/taxdump.tar.gz -C data/ nodes.dmp names.dmp
./blobtools nodesdb --nodes data/nodes.dmp --names data/names.dmp

Create blobplot

./blobtools create -i example/assembly.fna -b example/mapping_1.sorted.bam -t example/blast.out -o example/test && \
./blobtools view -i example/test.blobDB.json && \
./blobtools plot -i example/test.blobDB.json

Usage

    ./blobtools --help

Docker

A docker container can be build using the following command:

     docker build -t drl/blobtools .

This docker image can be run with sample data as follows:

     docker run -v $PWD/example:/example/  -t  drl/blobtools ./blobtools create -i /example/assembly.fna -b /example/mapping_1.sorted.bam -t /example/blast.out -o /example/test

About

Modular command-line solution for visualisation, quality control and taxonomic partitioning of genome datasets

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.6%
  • Dockerfile 0.4%