Skip to content

This repository is a PyTorch version of the paper "Multi-scale Residual Network for Image Super-Resolution" (ECCV 2018).

Notifications You must be signed in to change notification settings

zhuxyme/MSRN-PyTorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MSRN_PyTorch

This repository is an official PyTorch implementation of the paper "Multi-scale Residual Network for Image Super-Resolution".

Paper can be download from MSRN

All reconstructed SR images can be downloaded from here .

All test datasets (Preprocessed HR images) can be downloaded from here.

All original test datasets (HR images) can be downloaded from here.

@InProceedings{Li_2018_ECCV,
author = {Li, Juncheng and Fang, Faming and Mei, Kangfu and Zhang, Guixu},
title = {Multi-scale Residual Network for Image Super-Resolution},
booktitle = {The European Conference on Computer Vision (ECCV)},
month = {September},
year = {2018}
}

Our MSRN was trained and tested on the Y channel directly. However, more and more SR models are trained on RGB channels.

For a fair comparison, we retrained MSRN based on EDSR code.

We release the new codes and results on this project.

The old codes are moved into the OLD/ folder.

The new codes are stored on MSRN/ folder.

Now let's take a detailed introduction to the new codes.

cd MSRN/

Prerequisites:

  1. Python 3.6
  2. PyTorch >= 0.4.0
  3. numpy
  4. skimage
  5. imageio
  6. matplotlib
  7. tqdm

For more informaiton, please refer to EDSR and RCAN.

Document

Train/ : all train files

Test/ : all test files

demo.sh : all running instructions

Dataset

We used DIV2K dataset to train our model. Please download it from here or SNU_CVLab.

Extract the file and put it into the Train/dataset.

Training

Use --ext sep_reset argument on your first running.

You can skip the decoding part and use saved binaries with --ext sep argument in second time.

  cd Train/
  # MSRN x2  LR: 48 * 48  HR: 96 * 96
  python main.py --template MSRN --save MSRN_X2 --scale 2 --reset --save_results --patch_size 96 --ext sep_reset
  
  # MSRN x3  LR: 48 * 48  HR: 144 * 144
  python main.py --template MSRN --save MSRN_X3 --scale 3 --reset --save_results --patch_size 144 --ext sep_reset
  
  # MSRN x4  LR: 48 * 48  HR: 192 * 192
  python main.py --template MSRN --save MSRN_X4 --scale 4 --reset --save_results --patch_size 192 --ext sep_reset

Testing

Using pre-trained model for training, all test datasets must be pretreatment by Prepare_TestData_HR_LR.m and all pre-trained model should be put into Test/model/ first.

#MSRN x2
python main.py --data_test MyImage --scale 2 --model MSRN --pre_train ../model/MSRN_x2.pt --test_only --save_results --chop --save "MSRN" --testpath ../LR/LRBI --testset Set5

#MSRN+ x2
python main.py --data_test MyImage --scale 2 --model MSRN --pre_train ../model/MSRN_x2.pt --test_only --save_results --chop --self_ensemble --save "MSRN_plus" --testpath ../LR/LRBI --testset Set5


#MSRN x3
python main.py --data_test MyImage --scale 3 --model MSRN --pre_train ../model/MSRN_x3.pt --test_only --save_results --chop --save "MSRN" --testpath ../LR/LRBI --testset Set5

#MSRN+ x3
python main.py --data_test MyImage --scale 3 --model MSRN --pre_train ../model/MSRN_x3.pt --test_only --save_results --chop --self_ensemble --save "MSRN_plus" --testpath ../LR/LRBI --testset Set5


#MSRN x4
python main.py --data_test MyImage --scale 4 --model MSRN --pre_train ../model/MSRN_x4.pt --test_only --save_results --chop --save "MSRN" --testpath ../LR/LRBI --testset Set5

#MSRN+ x4
python main.py --data_test MyImage --scale 4 --model MSRN --pre_train ../model/MSRN_x4.pt --test_only --save_results --chop --self_ensemble --save "MSRN_plus" --testpath ../LR/LRBI --testset Set5

We also introduce self-ensemble strategy to improve our MSRN and denote the self-ensembled version as MSRN+.

More running instructions can be found in demo.sh.

Performance

Our MSRN is trained on RGB, but as in previous work, we only reported PSNR/SSIM on the Y channel.

We use Test/PSNR_SSIM_Results_BI_model.txt for PSRN/SSIM test.

Model Scale Set5 Set14 B100 Urban100 Manga109
old x2 38.08/0.9605 33.74/0.9170 32.23/0.9013 32.22/0.9326 38.82/0.9868
MSRN x2 38.08/0.9607 33.70/0.9186 32.23/0.9002 32.29/0.9303 38.69/0.9772
MSRN+ x2 38.15/0.9611 33.80/0.9192 32.28/0.9008 32.48/0.9318 38.93/0.9778
old x3 34.38/0.9262 30.34/0.8395 29.08/0.8041 28.08/0.8554 33.44/0.9427
MSRN x3 34.46/0.9278 30.41/0.8437 29.15/0.8064 28.33/0.8561 33.67/0.9456
MSRN+ x3 34.60/0.9286 30.52/0.8453 29.21/0.8075 28.51/0.8589 33.99/0.9473
old x4 32.07/0.8903 28.60/0.7751 27.52/0.7273 26.04/0.7896 30.17/0.9034
MSRN x4 32.26/0.8960 28.63/0.7836 27.61/0.7380 26.22/0.7911 30.57/0.9103
MSRN+ x4 32.40/0.8974 28.77/0.7860 27.69/0.7395 26.41/0.7952 30.93/0.9136

Convergence Analyses

MSRN x2 on DIV2K training dataset.

MSRN x3 on DIV2K training dataset.

MSRN x4 on DIV2K training dataset.

About

This repository is a PyTorch version of the paper "Multi-scale Residual Network for Image Super-Resolution" (ECCV 2018).

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 89.0%
  • MATLAB 10.1%
  • Shell 0.9%