Skip to content

Zero Experience Required: Plug & Play Modular Transfer Learning for Semantic Visual Navigation. CVPR 2022

License

Notifications You must be signed in to change notification settings

ziadalh/zero_experience_required

Repository files navigation

Zero Experience Required

This repository contains a PyTorch implementation of our CVPR 2022 paper:

Zero Experience Required: Plug & Play Modular Transfer Learning for Semantic Visual Navigation
Ziad Al-Halah, Santhosh K. Ramakrishnan, Kristen Grauman
The University of Texas at Austin, Facebook AI Research

Project website: https://vision.cs.utexas.edu/projects/zsel

Abstract

In reinforcement learning for visual navigation, it is common to develop a model for each new task, and train that model from scratch with task-specific interactions in 3D environments. However, this process is expensive; massive amounts of interactions are needed for the model to generalize well. Moreover, this process is repeated whenever there is a change in the task type or the goal modality. We present a unified approach to visual navigation using a novel modular transfer learning model. Our model can effectively leverage its experience from one source task and apply it to multiple target tasks (e.g., ObjectNav, RoomNav, ViewNav) with various goal modalities (e.g., image, sketch, audio, label). Furthermore, our model enables zero-shot experience learning, whereby it can solve the target tasks without receiving any task-specific interactive training. Our experiments on multiple photorealistic datasets and challenging tasks show that our approach learns faster, generalizes better, and outperforms SoTA models by a significant margin.

Installation

Clone the current repository and required submodules:

git clone [email protected]:ziadalh/zero_experience_required.git
cd zero_experience_required
git submodule init
git submodule update
export ZER_ROOT=$PWD

Create conda environment:

conda create --name zer python=3.6.10
conda activate zer

Install pytorch:

conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.2 -c pytorch

Install other requirements for this repository:

pip install -r requirements.txt

Install habitat-lab and habitat-sim:

cd $ZER_ROOT/dependencies/habitat-lab
pip install -r requirements.txt
python setup.py develop --all

cd $ZER_ROOT/dependencies/habitat-sim
pip install -r requirements.txt
python setup.py install --headless --with-cuda

Datasets

You can download the datasets used in this work from the following table:

Task Dataset Split File Install Path
ImageNav Gibson train imagenav_gibson_train $ZER_ROOT/data/datasets/zer/imagenav/gibson/v1/
ImageNav Gibson val imagenav_gibson_val $ZER_ROOT/data/datasets/zer/imagenav/gibson/v1/
ImageNav HM3D val imagenav_hm3d_val $ZER_ROOT/data/datasets/zer/imagenav/hm3d/v1/
ImageNav MP3D test imagenav_mp3d_test $ZER_ROOT/data/datasets/zer/imagenav/mp3d/v1/
ObjectNav Gibson train objectnav_gibson_train $ZER_ROOT/data/datasets/zer/objectnav/gibson/v1/
ObjectNav Gibson val objectnav_gibson_val $ZER_ROOT/data/datasets/zer/objectnav/gibson/v1/

Download the respective scenes from Gibson, HM3D, and Matterport3D. Save (or link) the scenes under $ZER_ROOT/data/scene_datasets/<DATASET_NAME> where <DATASET_NAME> is gibson, hm3d, or mp3d.

Pretrained models

Download the pretrained model from here:

Task Training Data Model
ImageNav Gibson imagenav_gibson

Evaluating ImageNav Models

The evaluation configurations are provided for our ImageNav model in config/imagenav/eval_ppo_imagenav_rgb.yaml

Make sure that the datasets paths are correct in DATASET.DATA_PATH of the respective dataset configuration file in config/imagenav/

To evaluate our ImageNav model on Gibson <SPLIT_NAME> (val_easy, val_medium, val_hard) split, run the following command:

python -u run.py \
  --exp-config config/imagenav/eval_ppo_imagenav_rgb.yaml \
  --run-type eval \
  --output-dir <OUTPUT_DIR>  \
  EVAL.SPLIT <SPLIT_NAME> \
  EVAL_CKPT_PATH_DIR <PATH_TO_IMAGENAV_GIBSON_MODEL>

For cross-evaluation on HM3D <SPLIT_NAME> (val_easy, val_medium, val_hard):

python -u run.py \
  --exp-config config/imagenav/eval_ppo_imagenav_rgb.yaml \
  --run-type eval \
  --output-dir <OUTPUT_DIR>  \
  EVAL.SPLIT <SPLIT_NAME> \
  EVAL_CKPT_PATH_DIR <PATH_TO_IMAGENAV_GIBSON_MODEL> \
  BASE_TASK_CONFIG_PATH config/imagenav/hm3d/imagenav_rgb.yaml

For cross-evaluation on MP3D <SPLIT_NAME> (test_easy, test_medium, test_hard):

python -u run.py \
  --exp-config config/imagenav/eval_ppo_imagenav_rgb.yaml \
  --run-type eval \
  --output-dir <OUTPUT_DIR>  \
  EVAL.SPLIT <SPLIT_NAME> \
  EVAL_CKPT_PATH_DIR <PATH_TO_IMAGENAV_GIBSON_MODEL> \
  BASE_TASK_CONFIG_PATH config/imagenav/mp3d/imagenav_rgb.yaml

Zero-Shot Experience Learning

We will release soon the code and data related to the zero-shot experience learning (ZSEL) experiments in the paper.

Acknowledgements

In our work, we used parts of Habitat Lab and extended it. Some of the ImageNav datasets are adapted from Hahn et al. and Mezghani et al.. Please see our paper for details.

Citation

@inproceedings{al-halah2022zsel,
    author = {Ziad Al-Halah and Santhosh K. Ramakrishnan and Kristen Grauman},
    title = {{Zero Experience Required: Plug \& Play Modular Transfer Learning for Semantic Visual Navigation}},
    year = {2022},
    booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    arxivId = {2202.02440}
}

License

This project is released under the MIT license, as found in the LICENSE file.

About

Zero Experience Required: Plug & Play Modular Transfer Learning for Semantic Visual Navigation. CVPR 2022

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages