forked from PaddlePaddle/Serving
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
277 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
# -*- coding: utf-8 -*- | ||
# | ||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# pylint: disable=doc-string-missing | ||
|
||
from __future__ import unicode_literals, absolute_import | ||
import os | ||
import sys | ||
import time | ||
import json | ||
import requests | ||
from paddle_serving_client import Client | ||
from paddle_serving_client.utils import MultiThreadRunner | ||
from paddle_serving_client.utils import benchmark_args, show_latency | ||
from paddle_serving_app.reader import ChineseBertReader | ||
|
||
from paddle_serving_app.reader import * | ||
import numpy as np | ||
|
||
|
||
|
||
args = benchmark_args() | ||
|
||
|
||
def single_func(idx, resource): | ||
img="./000000570688.jpg" | ||
profile_flags = False | ||
latency_flags = False | ||
if os.getenv("FLAGS_profile_client"): | ||
profile_flags = True | ||
if os.getenv("FLAGS_serving_latency"): | ||
latency_flags = True | ||
latency_list = [] | ||
|
||
if args.request == "rpc": | ||
preprocess = Sequential([ | ||
File2Image(), BGR2RGB(), Div(255.0), | ||
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], False), | ||
Resize(640, 640), Transpose((2, 0, 1)) | ||
]) | ||
|
||
postprocess = RCNNPostprocess("label_list.txt", "output") | ||
client = Client() | ||
|
||
client.load_client_config(args.model) | ||
client.connect([resource["endpoint"][idx % len(resource["endpoint"])]]) | ||
|
||
start = time.time() | ||
for i in range(turns): | ||
if args.batch_size >= 1: | ||
l_start = time.time() | ||
feed_batch = [] | ||
b_start = time.time() | ||
im = preprocess(img) | ||
for bi in range(args.batch_size): | ||
print("1111batch") | ||
print(bi) | ||
feed_batch.append({"image": im, | ||
"im_info": np.array(list(im.shape[1:]) + [1.0]), | ||
"im_shape": np.array(list(im.shape[1:]) + [1.0])}) | ||
# im = preprocess(img) | ||
b_end = time.time() | ||
|
||
if profile_flags: | ||
sys.stderr.write( | ||
"PROFILE\tpid:{}\tbert_pre_0:{} bert_pre_1:{}\n".format( | ||
os.getpid(), | ||
int(round(b_start * 1000000)), | ||
int(round(b_end * 1000000)))) | ||
#result = client.predict(feed=feed_batch, fetch=fetch) | ||
fetch_map = client.predict( | ||
feed=feed_batch, | ||
fetch=["multiclass_nms"]) | ||
fetch_map["image"] = img | ||
postprocess(fetch_map) | ||
|
||
l_end = time.time() | ||
if latency_flags: | ||
latency_list.append(l_end * 1000 - l_start * 1000) | ||
else: | ||
print("unsupport batch size {}".format(args.batch_size)) | ||
else: | ||
raise ValueError("not implemented {} request".format(args.request)) | ||
end = time.time() | ||
if latency_flags: | ||
return [[end - start], latency_list] | ||
else: | ||
return [[end - start]] | ||
|
||
|
||
if __name__ == '__main__': | ||
multi_thread_runner = MultiThreadRunner() | ||
endpoint_list = [ | ||
"127.0.0.1:7777" | ||
] | ||
turns = 10 | ||
start = time.time() | ||
result = multi_thread_runner.run( | ||
single_func, args.thread, {"endpoint": endpoint_list,"turns": turns}) | ||
end = time.time() | ||
total_cost = end - start | ||
|
||
avg_cost = 0 | ||
for i in range(args.thread): | ||
avg_cost += result[0][i] | ||
avg_cost = avg_cost / args.thread | ||
|
||
print("total cost: {}s".format(total_cost)) | ||
print("each thread cost: {}s. ".format(avg_cost)) | ||
print("qps: {}samples/s".format(args.batch_size * args.thread * turns / | ||
total_cost)) | ||
if os.getenv("FLAGS_serving_latency"): | ||
show_latency(result[1]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
rm profile_log* | ||
export CUDA_VISIBLE_DEVICES=0 | ||
export FLAGS_profile_server=1 | ||
export FLAGS_profile_client=1 | ||
export FLAGS_serving_latency=1 | ||
|
||
gpu_id=0 | ||
#save cpu and gpu utilization log | ||
if [ -d utilization ];then | ||
rm -rf utilization | ||
else | ||
mkdir utilization | ||
fi | ||
#start server | ||
$PYTHONROOT/bin/python3 -m paddle_serving_server_gpu.serve --model $1 --port 7777 --thread 4 --gpu_ids 0 --ir_optim > elog 2>&1 & | ||
sleep 5 | ||
|
||
#warm up | ||
$PYTHONROOT/bin/python3 benchmark.py --thread 4 --batch_size 1 --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1 | ||
echo -e "import psutil\ncpu_utilization=psutil.cpu_percent(1,False)\nprint('CPU_UTILIZATION:', cpu_utilization)\n" > cpu_utilization.py | ||
for thread_num in 1 4 8 16 | ||
do | ||
for batch_size in 1 | ||
do | ||
job_bt=`date '+%Y%m%d%H%M%S'` | ||
nvidia-smi --id=0 --query-compute-apps=used_memory --format=csv -lms 100 > gpu_use.log 2>&1 & | ||
nvidia-smi --id=0 --query-gpu=utilization.gpu --format=csv -lms 100 > gpu_utilization.log 2>&1 & | ||
gpu_memory_pid=$! | ||
$PYTHONROOT/bin/python3 benchmark.py --thread $thread_num --batch_size $batch_size --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1 | ||
kill ${gpu_memory_pid} | ||
kill `ps -ef|grep used_memory|awk '{print $2}'` | ||
echo "model_name:" $1 | ||
echo "thread_num:" $thread_num | ||
echo "batch_size:" $batch_size | ||
echo "=================Done====================" | ||
echo "model_name:$1" >> profile_log_$1 | ||
echo "batch_size:$batch_size" >> profile_log_$1 | ||
$PYTHONROOT/bin/python3 cpu_utilization.py >> profile_log_$1 | ||
job_et=`date '+%Y%m%d%H%M%S'` | ||
awk 'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "MAX_GPU_MEMORY:", max}' gpu_use.log >> profile_log_$1 | ||
awk 'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "GPU_UTILIZATION:", max}' gpu_utilization.log >> profile_log_$1 | ||
rm -rf gpu_use.log gpu_utilization.log | ||
$PYTHONROOT/bin/python3 ../util/show_profile.py profile $thread_num >> profile_log_$1 | ||
tail -n 8 profile >> profile_log_$1 | ||
echo "" >> profile_log_$1 | ||
done | ||
done | ||
|
||
#Divided log | ||
awk 'BEGIN{RS="\n\n"}{i++}{print > "bert_log_"i}' profile_log_$1 | ||
mkdir bert_log && mv bert_log_* bert_log | ||
ps -ef|grep 'serving'|grep -v grep|cut -c 9-15 | xargs kill -9 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
model_name:pddet_serving_model | ||
batch_size:1 | ||
CPU_UTILIZATION: 0.0 | ||
MAX_GPU_MEMORY: 14525 | ||
GPU_UTILIZATION: 100 | ||
thread_num: 1 | ||
prepro cost: 0.044376s in each thread | ||
client_infer cost: 4.227083s in each thread | ||
op0 cost: 0.015847s in each thread | ||
op1 cost: 3.990032s in each thread | ||
op2 cost: 9.7e-05s in each thread | ||
postpro cost: 0.000244s in each thread | ||
bert_pre cost: 0.304728s in each thread | ||
py_prepro cost: 0.000431s in each thread | ||
py_client cost: 4.273316s in each thread | ||
py_postpro cost: 0.000703s in each thread | ||
mean: 494.598486328125ms | ||
median: 480.2005615234375ms | ||
80 percent: 486.3544921875ms | ||
90 percent: 508.5200439453124ms | ||
99 percent: 624.6452905273438ms | ||
total cost: 5.024378299713135s | ||
each thread cost: 4.9460344314575195s. | ||
qps: 1.990295993550276samples/s | ||
|
||
model_name:pddet_serving_model | ||
batch_size:1 | ||
CPU_UTILIZATION: 0.0 | ||
MAX_GPU_MEMORY: 14525 | ||
GPU_UTILIZATION: 100 | ||
thread_num: 4 | ||
prepro cost: 0.0502565s in each thread | ||
client_infer cost: 14.9771025s in each thread | ||
op0 cost: 0.013033s in each thread | ||
op1 cost: 14.754957s in each thread | ||
op2 cost: 0.00012475s in each thread | ||
postpro cost: 0.00036225s in each thread | ||
bert_pre cost: 0.306132s in each thread | ||
py_prepro cost: 0.000511s in each thread | ||
py_client cost: 15.03027975s in each thread | ||
py_postpro cost: 0.0009275s in each thread | ||
mean: 1569.41435546875ms | ||
median: 1614.8760986328125ms | ||
80 percent: 1799.3856445312506ms | ||
90 percent: 2011.609326171875ms | ||
99 percent: 2379.27158203125ms | ||
total cost: 16.35568356513977s | ||
each thread cost: 15.694196701049805s. | ||
qps: 2.4456330327431455samples/s | ||
|
||
model_name:pddet_serving_model | ||
batch_size:1 | ||
CPU_UTILIZATION: 0.1 | ||
MAX_GPU_MEMORY: 14525 | ||
GPU_UTILIZATION: 100 | ||
thread_num: 8 | ||
prepro cost: 0.0546985s in each thread | ||
client_infer cost: 31.083384375s in each thread | ||
op0 cost: 0.0140595s in each thread | ||
op1 cost: 16.07133675s in each thread | ||
op2 cost: 0.000132625s in each thread | ||
postpro cost: 0.000318375s in each thread | ||
bert_pre cost: 0.31432075s in each thread | ||
py_prepro cost: 0.00053575s in each thread | ||
py_client cost: 31.140613125s in each thread | ||
py_postpro cost: 0.000807375s in each thread | ||
mean: 3181.2632019042967ms | ||
median: 3290.6607666015625ms | ||
80 percent: 3338.09208984375ms | ||
90 percent: 3686.9481689453123ms | ||
99 percent: 3735.27556640625ms | ||
total cost: 33.31558895111084s | ||
each thread cost: 31.812688767910004s. | ||
qps: 2.40127827598655samples/s | ||
|
||
model_name:pddet_serving_model | ||
batch_size:1 | ||
CPU_UTILIZATION: 0.0 | ||
MAX_GPU_MEMORY: 14525 | ||
GPU_UTILIZATION: 100 | ||
thread_num: 16 | ||
prepro cost: 0.0592799375s in each thread | ||
client_infer cost: 62.949139375s in each thread | ||
op0 cost: 0.0134921875s in each thread | ||
op1 cost: 16.5226278125s in each thread | ||
op2 cost: 0.00015525s in each thread | ||
postpro cost: 0.0003169375s in each thread | ||
bert_pre cost: 0.3272226875s in each thread | ||
py_prepro cost: 0.000590125s in each thread | ||
py_client cost: 63.0108379375s in each thread | ||
py_postpro cost: 0.0008313125s in each thread | ||
mean: 6370.063188171387ms | ||
median: 6705.1651611328125ms | ||
80 percent: 7052.77333984375ms | ||
90 percent: 7165.431909179687ms | ||
99 percent: 8213.415532226561ms | ||
total cost: 67.53448605537415s | ||
each thread cost: 63.70069542527199s. | ||
qps: 2.3691599558307113samples/s | ||
|