forked from bojone/attention
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
74 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
#! -*- coding: utf-8 -*- | ||
|
||
from keras import backend as K | ||
from keras.engine.topology import Layer | ||
|
||
class Attention(Layer): | ||
|
||
def __init__(self, nb_head, size_per_head, **kwargs): | ||
self.nb_head = nb_head | ||
self.size_per_head = size_per_head | ||
self.output_dim = nb_head*size_per_head | ||
super(Attention, self).__init__(**kwargs) | ||
|
||
def build(self, input_shape): | ||
self.WQ = self.add_weight(name='WQ', | ||
shape=(input_shape[0][-1], self.output_dim), | ||
initializer='glorot_uniform', | ||
trainable=True) | ||
self.WK = self.add_weight(name='WK', | ||
shape=(input_shape[1][-1], self.output_dim), | ||
initializer='glorot_uniform', | ||
trainable=True) | ||
self.WV = self.add_weight(name='WV', | ||
shape=(input_shape[2][-1], self.output_dim), | ||
initializer='glorot_uniform', | ||
trainable=True) | ||
super(Attention, self).build(input_shape) | ||
|
||
def Mask(self, inputs, seq_len, mode='mul'): | ||
if seq_len == None: | ||
return inputs | ||
else: | ||
mask = K.one_hot(seq_len[:,0], K.shape(inputs)[1]) | ||
mask = 1 - K.cumsum(mask, 1) | ||
for _ in range(len(inputs.shape)-2): | ||
mask = K.expand_dims(mask, 2) | ||
if mode == 'mul': | ||
return inputs * mask | ||
if mode == 'add': | ||
return inputs - (1 - mask) * 1e12 | ||
|
||
def call(self, x): | ||
#如果只传入Q_seq,K_seq,V_seq,那么就不做Mask | ||
#如果同时传入Q_seq,K_seq,V_seq,Q_len,V_len,那么对多余部分做Mask | ||
if len(x) == 3: | ||
Q_seq,K_seq,V_seq = x | ||
Q_len,V_len = None,None | ||
elif len(x) == 5: | ||
Q_seq,K_seq,V_seq,Q_len,V_len = x | ||
#对Q、K、V做线性变换 | ||
Q_seq = K.dot(Q_seq, self.WQ) | ||
Q_seq = K.reshape(Q_seq, (-1, K.shape(Q_seq)[1], self.nb_head, self.size_per_head)) | ||
Q_seq = K.permute_dimensions(Q_seq, (0,2,1,3)) | ||
K_seq = K.dot(K_seq, self.WK) | ||
K_seq = K.reshape(K_seq, (-1, K.shape(K_seq)[1], self.nb_head, self.size_per_head)) | ||
K_seq = K.permute_dimensions(K_seq, (0,2,1,3)) | ||
V_seq = K.dot(V_seq, self.WV) | ||
V_seq = K.reshape(V_seq, (-1, K.shape(V_seq)[1], self.nb_head, self.size_per_head)) | ||
V_seq = K.permute_dimensions(V_seq, (0,2,1,3)) | ||
#计算内积,然后mask,然后softmax | ||
A = K.batch_dot(Q_seq, K_seq, axes=[3,3]) | ||
A = K.permute_dimensions(A, (0,3,2,1)) | ||
A = self.Mask(A, V_len, 'add') | ||
A = K.permute_dimensions(A, (0,3,2,1)) | ||
A = K.softmax(A) | ||
#输出并mask | ||
O_seq = K.batch_dot(A, V_seq, axes=[3,2]) | ||
O_seq = K.permute_dimensions(O_seq, (0,2,1,3)) | ||
O_seq = K.reshape(O_seq, (-1, K.shape(O_seq)[1], self.output_dim)) | ||
O_seq = self.Mask(O_seq, Q_len, 'mul') | ||
return O_seq | ||
|
||
def compute_output_shape(self, input_shape): | ||
return (input_shape[0][0], input_shape[0][1], self.output_dim) |