Skip to content

keras implementation of A Discriminative Feature Learning Approach for Deep Face Recognition based on MNIST

Notifications You must be signed in to change notification settings

zwbx/keras-center-loss-MNIST

 
 

Repository files navigation

keras-center-loss-MNIST

MNIST implementation of A Discriminative Feature Learning Approach for Deep Face Recognition.

Purpose

There are two main implementation of center loss by keras online. One takes use of Embedding Layer, automatically computing the centers. Another takes use of self-defined layer, computing and updating the centers with self-defined equations strictly based on what the paper purposes in 'A Discriminative Feature Learning Approach for Deep Face Recognition'. So I implement both to compare the performance. Here are the details.

Joint Supervision Loss

Alt Joint Supervision Loss

Backwarding of Centers

Alt Backwarding of Centers

Embedding Results

input_=Input(shape=(1,))
centers=Embedding(10,2)(input_)
intra_loss=Lambda(lambda x:K.sum(K.square(x[0]-x[1][:,0]),1,keepdims=True))([out1,centers])
model_center_loss=Model([inputs,input_],[out2,intra_loss])
model_center_loss.compile(optimizer="sgd",
                          loss=["categorical_crossentropy",lambda y_true,y_pred:y_pred],
                          loss_weights=[1,lambda_c/2.],
                          metrics=["acc"])

More details, please refer to the code in this repo.

Self-defined Results

class CenterLossLayer(Layer):
    def __init__(self,alpha=0.5,**kwargs):
        super().__init__(**kwargs)
        self.alpha=alpha
    def build(self,input_shape):
        self.centers=self.add_weight(name="centers",
                                    shape=(10,2),
                                    initializer="uniform",
                                    trainable=False)
        super().build(input_shape)
    def call(self,x,mask=None):
        #x[0]:N*2 x[1]:N*10 centers:10*2
        delta_centers=K.dot(K.transpose(x[1]),K.dot(x[1],self.centers)-x[0])
        centers_count=K.sum(K.transpose(x[1]),axis=-1,keepdims=True)+1
        delta_centers/=centers_count
        new_centers=self.centers-self.alpha*delta_centers
        self.add_update((self.centers,new_centers),x)
        
        self.result=x[0]-K.dot(x[1],self.centers)
        self.result=K.sum(self.result**2,axis=1,keepdims=True)
        return self.result
    def compute_output_shape(self,input_shape):
        return K.int_shape(self.result)
input_=Input((10,))
center_loss=CenterLossLayer()([out1,input_])

model_center_loss=Model([inputs,input_],[out2,center_loss])
model_center_loss.compile(optimizer="sgd",
                          loss=["categorical_crossentropy",lambda y_true,y_pred:y_pred],
                          loss_weights=[1,lambda_c/2.],
                          metrics=["acc"])

More details, please refer to the code in this repo.

About

keras implementation of A Discriminative Feature Learning Approach for Deep Face Recognition based on MNIST

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%