forked from thuquant/awesome-quant
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
86 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
# Quant Papers Collection | ||
|
||
This is a joint effort on collecting latest papers related to quantitative finance. Please fork to add your wisdom! | ||
|
||
## Machine Learning Related | ||
|
||
* Cavalcante, Rodolfo C., et al. "Computational Intelligence and Financial Markets: A Survey and Future Directions." Expert Systems with Applications 55 (2016): 194-211.[(link)](http://www.sciencedirect.com/science/article/pii/S095741741630029X) | ||
|
||
### Low Frequency Prediction | ||
|
||
* Atsalakis G S, Valavanis K P. Surveying stock market forecasting techniques Part II: Soft | ||
computing methods. Expert Systems with Applications, 2009, 36(3):5932–5941. [(link)](https://scholar.google.com/scholar_url?url=http://www.sciencedirect.com/science/article/pii/S0957417408004417&hl=zh-CN&sa=T&oi=gsb&ct=res&cd=0&ei=bx96WJysNMK7jAHry6ToBA&scisig=AAGBfm0ZeE3fEbS6P7zo9Ltcd9M0vtAu9w) | ||
|
||
* Cai X, Lin X. Feature Extraction Using Restricted Boltzmann Machine for Stock Price Predic- | ||
tion. 2012 IEEE International Conference on Computer Science and Automation Engineering | ||
(CSAE), 2012. 80–83.[(link)](https://scholar.google.com/scholar_url?url=http://ieeexplore.ieee.org/xpls/abs_all.jsp%3Farnumber%3D6272913&hl=zh-CN&sa=T&oi=gsb&ct=res&cd=0&ei=uR96WN71F4nE2AaJsreoBQ&scisig=AAGBfm2biXd57RUWeaTdwuSosAyN-Lpkhg) | ||
|
||
* Nair B B, Dharini N M, Mohandas V P. A stock market trend prediction system using a hybrid | ||
decision tree-neuro-fuzzy system. Proceedings - 2nd International Conference on Advances in | ||
Recent Technologies in Communication and Computing, ARTCom 2010, 2010. 381–385. [(link)](https://scholar.google.com/scholar_url?url=http://ieeexplore.ieee.org/xpls/abs_all.jsp%3Farnumber%3D5655295&hl=zh-CN&sa=T&oi=gsb&ct=res&cd=0&ei=zx96WKLSJsSV2AbjyIiACA&scisig=AAGBfm0GQbLhoeE6waU9eWWfsUTYba5FmQ) | ||
|
||
* Lu C J, Lee T S, Chiu C C. Financial time series forecasting using independent component | ||
analysis and support vector regression. Decision Support Systems, 2009, 47(2):115–125. [(link)](https://scholar.google.com/scholar_url?url=http://www.sciencedirect.com/science/article/pii/S0167923609000323&hl=zh-CN&sa=T&oi=gsb&ct=res&cd=0&ei=ByB6WNPSB4iYjAHl4regCA&scisig=AAGBfm1iHSydvwcYSUzCM3YXChNVYuoQYg) | ||
|
||
* Creamer G, Freund Y. Automated trading with boosting and expert weighting. Quantitative | ||
Finance, 2010, 10(4):401–420. [(link)](https://scholar.google.com/scholar_url?url=http://www.tandfonline.com/doi/abs/10.1080/14697680903104113&hl=zh-CN&sa=T&oi=gsb&ct=res&cd=0&ei=GCB6WO63JcPLjAGumbfwBw&scisig=AAGBfm3q4amcbTFxs2tl5yuLG_4hoLSAsw) | ||
|
||
* Batres-Estrada, Bilberto. "Deep learning for multivariate financial time series." (2015). [(link)](http://www.diva-portal.org/smash/record.jsf?pid=diva2:820891) | ||
|
||
* Xiong, Ruoxuan, Eric P. Nicholas, and Yuan Shen. "Deep Learning Stock Volatilities with Google Domestic Trends." arXiv preprint arXiv:1512.04916 (2015).[(link)](http://arxiv.org/abs/1512.04916) | ||
|
||
* Sharang, Abhijit, and Chetan Rao. "Using machine learning for medium frequency derivative portfolio trading." arXiv preprint arXiv:1512.06228 (2015).[(link)](http://arxiv.org/abs/1512.06228) | ||
|
||
|
||
### Reinforcement Learning | ||
|
||
* Dempster, Michael AH, and Vasco Leemans. "An automated FX trading system using adaptive reinforcement learning." Expert Systems with Applications 30.3 (2006): 543-552. [(link)](https://scholar.google.com/scholar_url?url=http://www.sciencedirect.com/science/article/pii/S0957417405003015&hl=zh-CN&sa=T&oi=gsb&ct=res&cd=0&ei=LiB6WNKmKoK3jAHjxJyABg&scisig=AAGBfm3bJLN34rsebvNGo6IUfeYxiIC15w) | ||
|
||
* Tan, Zhiyong, Chai Quek, and Philip YK Cheng. "Stock trading with cycles: A financial application of ANFIS and reinforcement learning." Expert Systems with Applications 38.5 (2011): 4741-4755. [(link)](https://scholar.google.com/scholar_url?url=http://www.sciencedirect.com/science/article/pii/S095741741000905X&hl=zh-CN&sa=T&oi=gsb&ct=res&cd=0&ei=PSB6WL_aKMK7jAHry6ToBA&scisig=AAGBfm1WRwH4660mqK7RE0Mua2EDpuxLlA) | ||
|
||
* Rutkauskas, Aleksandras Vytautas, and Tomas Ramanauskas. "Building an artificial stock market populated by reinforcement‐learning agents." Journal of Business Economics and Management 10.4 (2009): 329-341.[(link)](https://scholar.google.com/scholar_url?url=http://www.tandfonline.com/doi/abs/10.3846/1611-1699.2009.10.329-341&hl=zh-CN&sa=T&oi=gsb&ct=res&cd=0&ei=USB6WKWEM4WMjAHRpKKwBw&scisig=AAGBfm15PBF06_fqletDTDk80FrNiyoWJg) | ||
|
||
* Deng, Yue, et al. "Deep Direct Reinforcement Learning for Financial Signal Representation and Trading." (2016).[(link)](http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7407387) | ||
|
||
|
||
### Natual Language Processing Related | ||
|
||
* Bollen J, Mao H, Zeng X. Twitter mood predicts the stock market. Journal of Computational | ||
Science, 2011, 2(1):1–8. [(link)](https://scholar.google.com/scholar_url?url=http://www.sciencedirect.com/science/article/pii/S187775031100007X&hl=zh-CN&sa=T&oi=gsb&ct=res&cd=0&ei=hCB6WJf-F4nE2AaJsreoBQ&scisig=AAGBfm0-CdCSkIorraVT063nZXOMGZPVng) | ||
|
||
* Preis T, Moat H S, Stanley H E, et al. Quantifying trading behavior in financial markets using | ||
Google Trends. Scientific reports, 2013, 3:1684. [(link)](https://scholar.google.com/scholar_url?url=http://www.nature.com/srep/2013/130425/srep01684/full/srep01684.html&hl=zh-CN&sa=T&oi=gsb-ggp&ct=res&cd=0&ei=lCB6WMyLOMSV2AbjyIiACA&scisig=AAGBfm1Kw6QEU25rQIFN5NppvKpiaZzlFg) | ||
|
||
* Moat H S, Curme C, Avakian A, et al. Quantifying Wikipedia Usage Patterns Before Stock | ||
Market Moves. Scientific Reports, 2013, 3:1–5. [(link)](https://scholar.google.com/scholar_url?url=http://www.nature.com/srep/2013/130508/srep01801/full/srep01801.html%3FWT.ec_id%3DSREP-20130514&hl=zh-CN&sa=T&oi=gsb-ggp&ct=res&cd=0&ei=oCB6WOnhJ4ufjAHc4L2ADA&scisig=AAGBfm2DeL0w8CD41aPbIs1V7GwAz8gOOg) | ||
|
||
* Ding, Xiao, et al. "Deep learning for event-driven stock prediction." Proceedings of the 24th International Joint Conference on Artificial Intelligence (ICJAI’15). 2015. [(link)](https://scholar.google.com/scholar_url?url=http://ijcai.org/papers15/Papers/IJCAI15-329.pdf&hl=zh-CN&sa=T&oi=gsb-ggp&ct=res&cd=0&ei=pCF6WOLxFcK7jAHry6ToBA&scisig=AAGBfm0xUNdATrhy1lLIFLzyxMswZU6ifg) | ||
|
||
* Fehrer, R., & Feuerriegel, S. (2015). Improving Decision Analytics with Deep Learning: The Case of Financial Disclosures. arXiv preprint arXiv:1508.01993. [(link)](http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1018&context=ecis2016_rip) | ||
|
||
|
||
### High Frequency Trading | ||
|
||
* Nevmyvaka Y, Feng Y, Kearns M. Reinforcement learning for optimized trade execution. Proceedings of the 23rd international conference on Machine learning ICML 06, 2006, 17(1):673–680. [(link)](https://scholar.google.com/scholar_url?url=http://dl.acm.org/citation.cfm%3Fid%3D1143929&hl=zh-CN&sa=T&oi=gsb&ct=res&cd=0&ei=ryB6WPTAMcaL2Abq5oagAQ&scisig=AAGBfm3zYhh3tFDl_ZwyF25UcRYUnbJAJg) | ||
|
||
* Ganchev K, Nevmyvaka Y, Kearns M, et al. Censored exploration and the dark pool problem. | ||
Communications of the ACM, 2010, 53(5):99. [(link)](https://scholar.google.com/scholar_url?url=http://dl.acm.org/citation.cfm%3Fid%3D1735247&hl=zh-CN&sa=T&oi=gsb&ct=res&cd=0&ei=vCB6WJnWIYiYjAHl4regCA&scisig=AAGBfm2UT7ekE1Wd-P_ZdJHt8TBs6hJFTg) | ||
|
||
* Kearns M, Nevmyvaka Y. Machine learning for market microstructure and high frequency | ||
trading. High frequency trading - New realities for traders, markets and regulators, 2013. 1–21. [(link)](https://scholar.google.com/scholar_url?url=http://www.smallake.kr/wp-content/uploads/2014/01/KearnsNevmyvakaHFTRiskBooks.pdf&hl=zh-CN&sa=T&oi=gsb-ggp&ct=res&cd=0&ei=zCB6WPToHsPLjAGumbfwBw&scisig=AAGBfm3POscrhMXvpJb5DBb5-oYsWlyzCw) | ||
|
||
* Sirignano, Justin A. "Deep Learning for Limit Order Books." arXiv preprint arXiv:1601.01987 (2016). [(link)](http://jasirign.github.io/pdf/DeepLearningLimitOrderBooks.pdf) | ||
|
||
* Deng, Yue, et al. "Sparse coding-inspired optimal trading system for HFT industry." IEEE Transactions on Industrial Informatics 11.2 (2015): 467-475.[(link)](http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7042734) | ||
|
||
* Ahuja, Saran, et al. "Limit order trading with a mean reverting reference price." arXiv preprint arXiv:1607.00454 (2016). [(link)](https://arxiv.org/abs/1607.00454) | ||
|
||
* Aït-Sahalia, Yacine, and Jean Jacod. "Analyzing the spectrum of asset returns: Jump and volatility components in high frequency data." Journal of Economic Literature 50.4 (2012): 1007-1050. [(link)](http://www.ingentaconnect.com/content/aea/jel/2012/00000050/00000004/art00002) | ||
|
||
## Portfolio Management | ||
|
||
* B. Li and S. C. H. Hoi, “Online portfolio selection,” ACM Comput. Surv., vol. 46, no. 3, pp. 1–36, 2014. [(link)](http://dl.acm.org/citation.cfm?id=2512962) | ||
|
||
* Heaton, J. B., Polson, N. G., & Witte, J. H. (2016). Deep Portfolio Theory. [(link)](http://arxiv.org/abs/1605.07230) | ||
|
||
|