This is the project repo for the final project of the Udacity Self-Driving Car Nanodegree: Programming a Real Self-Driving Car. For more information about the project, see the project introduction here.
Name | Udacity Account Email |
---|---|
Marko Dragojevic | [email protected] |
Implemented functionality overview is given in this section
Waypoint Updater node implements functionality of using predefined list of waypoints and information about car's current position to determin to which waypoint car should move next. In addition to this, this node is also responsible for 'issuing' stop commands on traffic lights, once it has been notified of red traffic light existance.
This node implements functionality of 'drive-by-wire'. It is responsible for direct communication with vehicle's platform. For control of throttle PID controller is used. YawController is used for calculating desired steering angle.
Final part of this project is traffic light detector/classifier node which is responsbile for publishing target stop waypoint index of next red traffic light. This information is then used by waypoint updater in order to generate stopping trajectory.
In order to detect which state of traffic light is currently present pretrained tensorflow model (SSD_Mobilenet version 11.6.17).
Tensorflow object detection API and Tensorflow Model Zoo was for purpose of retraining/evaluating performances of mentioned model.
Existing dataset was used to retrain the model and it can be found here.
Please use one of the two installation options, either native or docker installation.
-
Be sure that your workstation is running Ubuntu 16.04 Xenial Xerus or Ubuntu 14.04 Trusty Tahir. Ubuntu downloads can be found here.
-
If using a Virtual Machine to install Ubuntu, use the following configuration as minimum:
- 2 CPU
- 2 GB system memory
- 25 GB of free hard drive space
The Udacity provided virtual machine has ROS and Dataspeed DBW already installed, so you can skip the next two steps if you are using this.
-
Follow these instructions to install ROS
- ROS Kinetic if you have Ubuntu 16.04.
- ROS Indigo if you have Ubuntu 14.04.
-
Download the Udacity Simulator.
Build the docker container
docker build . -t capstone
Run the docker file
docker run -p 4567:4567 -v $PWD:/capstone -v /tmp/log:/root/.ros/ --rm -it capstone
To set up port forwarding, please refer to the "uWebSocketIO Starter Guide" found in the classroom (see Extended Kalman Filter Project lesson).
- Clone the project repository
git clone https://github.com/udacity/CarND-Capstone.git
- Install python dependencies
cd CarND-Capstone
pip install -r requirements.txt
- Make and run styx
cd ros
catkin_make
source devel/setup.sh
roslaunch launch/styx.launch
- Run the simulator
- Download training bag that was recorded on the Udacity self-driving car.
- Unzip the file
unzip traffic_light_bag_file.zip
- Play the bag file
rosbag play -l traffic_light_bag_file/traffic_light_training.bag
- Launch your project in site mode
cd CarND-Capstone/ros
roslaunch launch/site.launch
- Confirm that traffic light detection works on real life images
Outside of requirements.txt
, here is information on other driver/library versions used in the simulator and Carla:
Specific to these libraries, the simulator grader and Carla use the following:
Simulator | Carla | |
---|---|---|
Nvidia driver | 384.130 | 384.130 |
CUDA | 8.0.61 | 8.0.61 |
cuDNN | 6.0.21 | 6.0.21 |
TensorRT | N/A | N/A |
OpenCV | 3.2.0-dev | 2.4.8 |
OpenMP | N/A | N/A |
We are working on a fix to line up the OpenCV versions between the two.