forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
ad9da36
commit 3b96299
Showing
3 changed files
with
646 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
# Stochastic Training for Graph Convolutional Networks | ||
|
||
* Paper: [Control Variate](https://arxiv.org/abs/1710.10568) | ||
* Paper: [Skip Connection](https://arxiv.org/abs/1809.05343) | ||
* Author's code: [https://github.com/thu-ml/stochastic_gcn](https://github.com/thu-ml/stochastic_gcn) | ||
|
||
Dependencies | ||
------------ | ||
- PyTorch 0.4.1+ | ||
- requests | ||
|
||
``bash | ||
pip install torch requests | ||
`` | ||
|
||
### Neighbor Sampling & Skip Connection | ||
cora: test accuracy ~83% with --num-neighbors 2, ~84% by training on the full graph | ||
``` | ||
python gcn_ns_sc.py --dataset cora --self-loop --num-neighbors 2 --batch-size 1000000 --test-batch-size 1000000 --gpu 0 | ||
``` | ||
|
||
citeseer: test accuracy ~69% with --num-neighbors 2, ~70% by training on the full graph | ||
``` | ||
python gcn_ns_sc.py --dataset citeseer --self-loop --num-neighbors 2 --batch-size 1000000 --test-batch-size 1000000 --gpu 0 | ||
``` | ||
|
||
pubmed: test accuracy ~76% with --num-neighbors 3, ~77% by training on the full graph | ||
``` | ||
python gcn_ns_sc.py --dataset pubmed --self-loop --num-neighbors 3 --batch-size 1000000 --test-batch-size 1000000 --gpu 0 | ||
``` | ||
|
||
reddit: test accuracy ~91% with --num-neighbors 2 and --batch-size 1000, ~93% by training on the full graph | ||
``` | ||
python gcn_ns_sc.py --dataset reddit-self-loop --num-neighbors 2 --batch-size 1000 --test-batch-size 500000 --n-hidden 64 | ||
``` | ||
|
||
### Control Variate & Skip Connection | ||
cora: test accuracy ~84% with --num-neighbors 1, ~84% by training on the full graph | ||
``` | ||
python gcn_cv_sc.py --dataset cora --self-loop --num-neighbors 1 --batch-size 1000000 --test-batch-size 1000000 --gpu 0 | ||
``` | ||
|
||
citeseer: test accuracy ~69% with --num-neighbors 1, ~70% by training on the full graph | ||
``` | ||
python gcn_cv_sc.py --dataset citeseer --self-loop --num-neighbors 1 --batch-size 1000000 --test-batch-size 1000000 --gpu 0 | ||
``` | ||
|
||
pubmed: test accuracy ~77% with --num-neighbors 1, ~77% by training on the full graph | ||
``` | ||
python gcn_cv_sc.py --dataset pubmed --self-loop --num-neighbors 1 --batch-size 1000000 --test-batch-size 1000000 --gpu 0 | ||
``` | ||
|
||
reddit: test accuracy ~93% with --num-neighbors 1 and --batch-size 1000, ~93% by training on the full graph | ||
``` | ||
python gcn_cv_sc.py --dataset reddit-self-loop --num-neighbors 1 --batch-size 1000 --test-batch-size 500000 --n-hidden 64 | ||
``` | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,323 @@ | ||
import argparse, time, math | ||
import numpy as np | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import dgl | ||
import dgl.function as fn | ||
from dgl import DGLGraph | ||
from dgl.data import register_data_args, load_data | ||
|
||
|
||
class NodeUpdate(nn.Module): | ||
def __init__(self, layer_id, in_feats, out_feats, dropout, activation=None, test=False, concat=False): | ||
super(NodeUpdate, self).__init__() | ||
self.layer_id = layer_id | ||
self.linear = nn.Linear(in_feats, out_feats) | ||
self.dropout = None | ||
if dropout != 0: | ||
self.dropout = nn.Dropout(p=dropout) | ||
self.activation = activation | ||
self.concat = concat | ||
self.test = test | ||
|
||
def forward(self, node): | ||
h = node.data['h'] | ||
if self.test: | ||
norm = node.data['norm'] | ||
h = h * norm | ||
else: | ||
agg_history_str = 'agg_h_{}'.format(self.layer_id-1) | ||
agg_history = node.data[agg_history_str] | ||
# control variate | ||
h = h + agg_history | ||
if self.dropout: | ||
h = self.dropout(h) | ||
h = self.linear(h) | ||
if self.concat: | ||
h = torch.cat((h, self.activation(h)), dim=1) | ||
elif self.activation: | ||
h = self.activation(h) | ||
return {'activation': h} | ||
|
||
|
||
class GCNSampling(nn.Module): | ||
def __init__(self, | ||
in_feats, | ||
n_hidden, | ||
n_classes, | ||
n_layers, | ||
activation, | ||
dropout): | ||
super(GCNSampling, self).__init__() | ||
self.n_layers = n_layers | ||
self.dropout = None | ||
if dropout != 0: | ||
self.dropout = nn.Dropout(p=dropout) | ||
self.activation = activation | ||
# input layer | ||
self.linear = nn.Linear(in_feats, n_hidden) | ||
self.layers = nn.ModuleList() | ||
# hidden layers | ||
for i in range(1, n_layers): | ||
skip_start = (i == n_layers-1) | ||
self.layers.append(NodeUpdate(i, n_hidden, n_hidden, dropout, activation, concat=skip_start)) | ||
# output layer | ||
self.layers.append(NodeUpdate(n_layers, 2*n_hidden, n_classes, dropout)) | ||
|
||
def forward(self, nf): | ||
h = nf.layers[0].data['preprocess'] | ||
if self.dropout: | ||
h = self.dropout(h) | ||
h = self.linear(h) | ||
|
||
skip_start = (0 == self.n_layers-1) | ||
if skip_start: | ||
h = torch.cat((h, self.activation(h)), dim=1) | ||
else: | ||
h = self.activation(h) | ||
|
||
for i, layer in enumerate(self.layers): | ||
new_history = h.clone().detach() | ||
history_str = 'h_{}'.format(i) | ||
history = nf.layers[i].data[history_str] | ||
h = h - history | ||
|
||
nf.layers[i].data['h'] = h | ||
nf.block_compute(i, | ||
fn.copy_src(src='h', out='m'), | ||
lambda node : {'h': node.mailbox['m'].mean(dim=1)}, | ||
layer) | ||
h = nf.layers[i+1].data.pop('activation') | ||
# update history | ||
if i < nf.num_layers-1: | ||
nf.layers[i].data[history_str] = new_history | ||
|
||
return h | ||
|
||
|
||
class GCNInfer(nn.Module): | ||
def __init__(self, | ||
in_feats, | ||
n_hidden, | ||
n_classes, | ||
n_layers, | ||
activation): | ||
super(GCNInfer, self).__init__() | ||
self.n_layers = n_layers | ||
self.activation = activation | ||
# input layer | ||
self.linear = nn.Linear(in_feats, n_hidden) | ||
self.layers = nn.ModuleList() | ||
# hidden layers | ||
for i in range(1, n_layers): | ||
skip_start = (i == n_layers-1) | ||
self.layers.append(NodeUpdate(i, n_hidden, n_hidden, 0, activation, True, concat=skip_start)) | ||
# output layer | ||
self.layers.append(NodeUpdate(n_layers, 2*n_hidden, n_classes, 0, None, True)) | ||
|
||
def forward(self, nf): | ||
h = nf.layers[0].data['preprocess'] | ||
h = self.linear(h) | ||
|
||
skip_start = (0 == self.n_layers-1) | ||
if skip_start: | ||
h = torch.cat((h, self.activation(h)), dim=1) | ||
else: | ||
h = self.activation(h) | ||
|
||
for i, layer in enumerate(self.layers): | ||
nf.layers[i].data['h'] = h | ||
nf.block_compute(i, | ||
fn.copy_src(src='h', out='m'), | ||
fn.sum(msg='m', out='h'), | ||
layer) | ||
h = nf.layers[i+1].data.pop('activation') | ||
|
||
return h | ||
|
||
|
||
def main(args): | ||
# load and preprocess dataset | ||
data = load_data(args) | ||
|
||
if args.self_loop and not args.dataset.startswith('reddit'): | ||
data.graph.add_edges_from([(i,i) for i in range(len(data.graph))]) | ||
|
||
train_nid = np.nonzero(data.train_mask)[0].astype(np.int64) | ||
test_nid = np.nonzero(data.test_mask)[0].astype(np.int64) | ||
|
||
features = torch.FloatTensor(data.features) | ||
labels = torch.LongTensor(data.labels) | ||
train_mask = torch.ByteTensor(data.train_mask) | ||
val_mask = torch.ByteTensor(data.val_mask) | ||
test_mask = torch.ByteTensor(data.test_mask) | ||
in_feats = features.shape[1] | ||
n_classes = data.num_labels | ||
n_edges = data.graph.number_of_edges() | ||
|
||
n_train_samples = train_mask.sum().item() | ||
n_val_samples = val_mask.sum().item() | ||
n_test_samples = test_mask.sum().item() | ||
|
||
print("""----Data statistics------' | ||
#Edges %d | ||
#Classes %d | ||
#Train samples %d | ||
#Val samples %d | ||
#Test samples %d""" % | ||
(n_edges, n_classes, | ||
n_train_samples, | ||
n_val_samples, | ||
n_test_samples)) | ||
|
||
# create GCN model | ||
g = DGLGraph(data.graph, readonly=True) | ||
norm = 1. / g.in_degrees().float().unsqueeze(1) | ||
|
||
if args.gpu < 0: | ||
cuda = False | ||
else: | ||
cuda = True | ||
torch.cuda.set_device(args.gpu) | ||
features = features.cuda() | ||
labels = labels.cuda() | ||
train_mask = train_mask.cuda() | ||
val_mask = val_mask.cuda() | ||
test_mask = test_mask.cuda() | ||
norm = norm.cuda() | ||
|
||
g.ndata['features'] = features | ||
|
||
num_neighbors = args.num_neighbors | ||
n_layers = args.n_layers | ||
|
||
g.ndata['norm'] = norm | ||
|
||
g.update_all(fn.copy_src(src='features', out='m'), | ||
fn.sum(msg='m', out='preprocess'), | ||
lambda node : {'preprocess': node.data['preprocess'] * node.data['norm']}) | ||
|
||
for i in range(n_layers): | ||
g.ndata['h_{}'.format(i)] = torch.zeros(features.shape[0], args.n_hidden).to(device=features.device) | ||
|
||
g.ndata['h_{}'.format(n_layers-1)] = torch.zeros(features.shape[0], 2*args.n_hidden).to(device=features.device) | ||
|
||
|
||
model = GCNSampling(in_feats, | ||
args.n_hidden, | ||
n_classes, | ||
n_layers, | ||
F.relu, | ||
args.dropout) | ||
|
||
loss_fcn = nn.CrossEntropyLoss() | ||
|
||
infer_model = GCNInfer(in_feats, | ||
args.n_hidden, | ||
n_classes, | ||
n_layers, | ||
F.relu) | ||
|
||
if cuda: | ||
model.cuda() | ||
infer_model.cuda() | ||
|
||
# use optimizer | ||
optimizer = torch.optim.Adam(model.parameters(), | ||
lr=args.lr, | ||
weight_decay=args.weight_decay) | ||
|
||
for epoch in range(args.n_epochs): | ||
for nf in dgl.contrib.sampling.NeighborSampler(g, args.batch_size, | ||
num_neighbors, | ||
neighbor_type='in', | ||
shuffle=True, | ||
num_hops=n_layers, | ||
seed_nodes=train_nid): | ||
for i in range(n_layers): | ||
agg_history_str = 'agg_h_{}'.format(i) | ||
g.pull(nf.layer_parent_nid(i+1).long(), fn.copy_src(src='h_{}'.format(i), out='m'), | ||
fn.sum(msg='m', out=agg_history_str), | ||
lambda node : {agg_history_str: node.data[agg_history_str] * node.data['norm']}) | ||
|
||
node_embed_names = [['preprocess', 'h_0']] | ||
for i in range(1, n_layers): | ||
node_embed_names.append(['h_{}'.format(i), 'agg_h_{}'.format(i-1)]) | ||
node_embed_names.append(['agg_h_{}'.format(n_layers-1)]) | ||
nf.copy_from_parent(node_embed_names=node_embed_names) | ||
|
||
model.train() | ||
# forward | ||
pred = model(nf) | ||
batch_nids = nf.layer_parent_nid(-1).to(device=pred.device).long() | ||
batch_labels = labels[batch_nids] | ||
loss = loss_fcn(pred, batch_labels) | ||
|
||
optimizer.zero_grad() | ||
loss.backward() | ||
optimizer.step() | ||
|
||
node_embed_names = [['h_{}'.format(i)] for i in range(n_layers)] | ||
node_embed_names.append([]) | ||
nf.copy_to_parent(node_embed_names=node_embed_names) | ||
|
||
|
||
for infer_param, param in zip(infer_model.parameters(), model.parameters()): | ||
infer_param.data.copy_(param.data) | ||
|
||
|
||
num_acc = 0. | ||
|
||
for nf in dgl.contrib.sampling.NeighborSampler(g, args.test_batch_size, | ||
g.number_of_nodes(), | ||
neighbor_type='in', | ||
num_hops=n_layers, | ||
seed_nodes=test_nid): | ||
node_embed_names = [['preprocess']] | ||
for i in range(n_layers): | ||
node_embed_names.append(['norm']) | ||
nf.copy_from_parent(node_embed_names=node_embed_names) | ||
|
||
infer_model.eval() | ||
with torch.no_grad(): | ||
pred = infer_model(nf) | ||
batch_nids = nf.layer_parent_nid(-1).to(device=pred.device).long() | ||
batch_labels = labels[batch_nids] | ||
num_acc += (pred.argmax(dim=1) == batch_labels).sum().cpu().item() | ||
|
||
print("Test Accuracy {:.4f}". format(num_acc/n_test_samples)) | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser(description='GCN') | ||
register_data_args(parser) | ||
parser.add_argument("--dropout", type=float, default=0.5, | ||
help="dropout probability") | ||
parser.add_argument("--gpu", type=int, default=-1, | ||
help="gpu") | ||
parser.add_argument("--lr", type=float, default=3e-2, | ||
help="learning rate") | ||
parser.add_argument("--n-epochs", type=int, default=200, | ||
help="number of training epochs") | ||
parser.add_argument("--batch-size", type=int, default=1000, | ||
help="train batch size") | ||
parser.add_argument("--test-batch-size", type=int, default=1000, | ||
help="test batch size") | ||
parser.add_argument("--num-neighbors", type=int, default=2, | ||
help="number of neighbors to be sampled") | ||
parser.add_argument("--n-hidden", type=int, default=16, | ||
help="number of hidden gcn units") | ||
parser.add_argument("--n-layers", type=int, default=1, | ||
help="number of hidden gcn layers") | ||
parser.add_argument("--self-loop", action='store_true', | ||
help="graph self-loop (default=False)") | ||
parser.add_argument("--weight-decay", type=float, default=5e-4, | ||
help="Weight for L2 loss") | ||
args = parser.parse_args() | ||
|
||
print(args) | ||
|
||
main(args) | ||
|
||
|
Oops, something went wrong.