forked from miramliu/SouthSideScience_Fair
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added interactive CT reconstruction demo
- Loading branch information
Showing
2 changed files
with
151 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
CT/recon_process/ | ||
__pycache__/ | ||
**/.DS_Store | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
import os | ||
import numpy as np | ||
import imageio | ||
from PIL import Image | ||
|
||
# pop-out plots | ||
import matplotlib | ||
import matplotlib.pyplot as plt | ||
|
||
|
||
# plot defaults | ||
im_kwargs = {'cmap':'gray', 'vmin':0} | ||
|
||
# load the data | ||
data_dir = 'recon_process/' | ||
mat_files = sorted([data_dir+f for f in os.listdir(data_dir) if 'matrix' in f]) # png | ||
arr_files = sorted([data_dir+f for f in os.listdir(data_dir) if 'array' in f]) # npy | ||
|
||
# camera | ||
image = Image.open('camera.png').convert('L') | ||
cam = np.asarray(image) | ||
cam = cam/np.max(cam) | ||
cam = -cam + 1 | ||
cy,cx = cam.shape | ||
print('cam', cx, cy) | ||
|
||
cam_width = 100 | ||
cam_length = cam_width*cy/cx | ||
|
||
|
||
# load all the arrays | ||
arrs = [np.load(f) for f in arr_files] | ||
|
||
# load the xcat | ||
xcat = np.load(arr_files[-1]) | ||
|
||
# crop | ||
Ncrop = 50 | ||
xcat = xcat[Ncrop:-Ncrop, Ncrop:-Ncrop] | ||
|
||
# save shape | ||
Nx, Ny = xcat.shape | ||
print(Nx, Ny) | ||
|
||
|
||
def get_angle(v1, v2): | ||
''' function for getting angle between two 2D vectors''' | ||
def unit_vector(vector): | ||
return np.array(vector) / np.linalg.norm(vector) | ||
v1_u = unit_vector(v1) | ||
v2_u = unit_vector(v2) | ||
return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))*180/np.pi | ||
|
||
|
||
|
||
pad = 30 | ||
dN = 300 | ||
R0 = 450 #np.sqrt((Nx/2)**2 + (Ny/2)**2) | ||
a0 = 30 # degrees | ||
a_fan = 40 # degrees | ||
|
||
# plot image, get ROIs | ||
fig,[ax,ax2] = plt.subplots(1,2, figsize=[10,7], dpi=200) | ||
#ax1.axis('off') | ||
ax2.axis('off') | ||
fig.tight_layout(pad=0) | ||
|
||
def show_xcat(): | ||
ax.set_xticks([]) | ||
ax.set_yticks([]) | ||
|
||
ax.set_xlim(-dN, Nx+dN) | ||
ax.set_ylim(Ny+dN, -dN) | ||
|
||
ax.set_facecolor((0,0,0)) | ||
ax.imshow(xcat, **im_kwargs) | ||
#ax.imshow(xcat_circ, **im_kwargs) | ||
|
||
# add source path circle | ||
circ1 = plt.Circle( (Nx/2, Ny/2), R0, fill=False, color='w', lw=10) | ||
ax.add_artist(circ1) | ||
|
||
# draw "X" for exit | ||
ax.plot(Nx+dN-pad, -dN+pad, 'ws', markersize=6) | ||
ax.plot(Nx+dN-pad, -dN+pad, 'rx', markersize=6, markeredgewidth=1) | ||
|
||
ax.set_title('Patient in CT scanner') | ||
|
||
# show start, a0 | ||
ax.plot(Nx/2, Ny/2-R0, 'ro', markerfacecolor="None", markersize=10) | ||
#ax.text(Nx/2+30, Ny/2-R0+25, 'start', color='r', fontsize=8) | ||
ax.arrow(Nx/2-40, Ny/2-R0, -50, 5, color='r', head_width=15) | ||
|
||
|
||
|
||
# initialize plots | ||
show_xcat() | ||
#ax1.imshow(betas[0], **im_kwargs) | ||
ax2.imshow(arrs[0], cmap='gray') | ||
ax2.set_title('Output image') | ||
|
||
signal = plt.ginput(1, timeout=-1) | ||
x1, y1 = signal[0][0], signal[0][1] | ||
while x1<Nx+dN-pad and y1>-dN+pad: | ||
ax.cla() | ||
|
||
|
||
#ax.imshow(cam, extent=(x1-cam_width, x1+cam_width, y1+cam_length, y1-cam_length), cmap='gray') | ||
show_xcat() | ||
|
||
ax.plot(x1, y1, '+', color='r', markersize=5) | ||
a0 = get_angle([0,-1], [x1-Nx/2,y1-Ny/2]) | ||
if x1>Nx/2: | ||
a0=-a0 + 360 | ||
|
||
for angle in range(0,int(a0)): | ||
t0 = -angle*np.pi/180 | ||
x0 = Nx/2 + R0*np.sin(t0) | ||
y0 = Ny/2 - R0*np.cos(t0) | ||
ax.plot(x0, y0, 'o', color='r', markersize=5) | ||
|
||
col='cornflowerblue' | ||
# draw the source/detector wedge | ||
t0 = -a0*np.pi/180 | ||
x0 = Nx/2 + R0*np.sin(t0) | ||
y0 = Ny/2 - R0*np.cos(t0) | ||
ax.plot(x0, y0, 'o', color=col, markersize=5) | ||
|
||
a1 = -a0 + 90 - a_fan/2 | ||
a2 = -a0 + 90 + a_fan/2 | ||
wedge_det = matplotlib.patches.Wedge((x0, y0), 2*R0, a1, a2, fill=False, color=col) | ||
ax.add_artist(wedge_det) | ||
|
||
# draw the updated matrix/beta | ||
i_img = int(1000*a0/360) | ||
#ax1.imshow(betas[i_img]) | ||
ax2.imshow(arrs[i_img], cmap='gray') | ||
|
||
fig.canvas.draw() | ||
|
||
# loop | ||
signal = plt.ginput(1, timeout=-1) | ||
x1, y1 = signal[0][0], signal[0][1] | ||
|
||
|
||
plt.close() | ||
|