Skip to content

Latest commit

 

History

History
426 lines (360 loc) · 17.2 KB

quickstart-create-data-factory-dot-net.md

File metadata and controls

426 lines (360 loc) · 17.2 KB
title description services documentationcenter author manager ms.reviewer ms.service ms.workload ms.tgt_pltfrm ms.devlang ms.topic ms.date ms.author
Create an Azure data factory using .NET | Microsoft Docs
Create an Azure data factory to copy data from one location in Azure Blob storage to another location.
data-factory
linda33wj
craigg
douglasl
data-factory
data-services
dotnet
quickstart
03/28/2018
jingwang

Create a data factory and pipeline using .NET SDK

[!div class="op_single_selector" title1="Select the version of Data Factory service you are using:"]

This quickstart describes how to use .NET SDK to create an Azure data factory. The pipeline you create in this data factory copies data from one folder to another folder in an Azure blob storage. For a tutorial on how to transform data using Azure Data Factory, see Tutorial: Transform data using Spark.

Note

This article does not provide a detailed introduction of the Data Factory service. For an introduction to the Azure Data Factory service, see Introduction to Azure Data Factory.

If you don't have an Azure subscription, create a free account before you begin.

[!INCLUDE data-factory-quickstart-prerequisites]

Visual Studio

The walkthrough in this article uses Visual Studio 2017. You can also use Visual Studio 2013 or 2015.

Azure .NET SDK

Download and install Azure .NET SDK on your machine.

Create an application in Azure Active Directory

Following instructions from the sections in this article to do the following tasks:

  1. Create an Azure Active Directory application. Create an application in Azure Active Directory that represents the .NET application you are creating in this tutorial. For the sign-on URL, you can provide a dummy URL as shown in the article (https://contoso.org/exampleapp).
  2. Get the application ID and authentication key, and note down these values that you use later in this tutorial.
  3. Get the tenant ID and note down this value that you use later in this tutorial.
  4. Assign the application to the Contributor role at the subscription level so that the application can create data factories in the subscription.

Create a Visual Studio project

Using Visual Studio 2013/2015/2017, create a C# .NET console application.

  1. Launch Visual Studio.
  2. Click File, point to New, and click Project.
  3. Select Visual C# -> Console App (.NET Framework) from the list of project types on the right. .NET version 4.5.2 or above is required.
  4. Enter ADFv2QuickStart for the Name.
  5. Click OK to create the project.

Install NuGet packages

  1. Click Tools -> NuGet Package Manager -> Package Manager Console.

  2. In the Package Manager Console, run the following commands to install packages:

    Install-Package Microsoft.Azure.Management.DataFactory -Prerelease
    Install-Package Microsoft.Azure.Management.ResourceManager -Prerelease
    Install-Package Microsoft.IdentityModel.Clients.ActiveDirectory
    
    

Create a data factory client

  1. Open Program.cs, include the following statements to add references to namespaces.

    using System;
    using System.Collections.Generic;
    using System.Linq;
    using Microsoft.Rest;
    using Microsoft.Azure.Management.ResourceManager;
    using Microsoft.Azure.Management.DataFactory;
    using Microsoft.Azure.Management.DataFactory.Models;
    using Microsoft.IdentityModel.Clients.ActiveDirectory;
  2. Add the following code to the Main method that sets the variables. Replace the place-holders with your own values. For a list of Azure regions in which Data Factory is currently available, select the regions that interest you on the following page, and then expand Analytics to locate Data Factory: Products available by region. The data stores (Azure Storage, Azure SQL Database, etc.) and computes (HDInsight, etc.) used by data factory can be in other regions.

    // Set variables
    string tenantID = "<your tenant ID>";
    string applicationId = "<your application ID>";
    string authenticationKey = "<your authentication key for the application>";
    string subscriptionId = "<your subscription ID where the data factory resides>";
    string resourceGroup = "<your resource group where the data factory resides>";
    string region = "East US 2";
    string dataFactoryName = "<specify the name of data factory to create. It must be globally unique.>";
    string storageAccount = "<your storage account name to copy data>";
    string storageKey = "<your storage account key>";
    // specify the container and input folder from which all files need to be copied to the output folder. 
    string inputBlobPath = "<the path to existing blob(s) to copy data from, e.g. containername/foldername>";
    //specify the contains and output folder where the files are copied
    string outputBlobPath = "<the blob path to copy data to, e.g. containername/foldername>";
    
    string storageLinkedServiceName = "AzureStorageLinkedService";  // name of the Azure Storage linked service
    string blobDatasetName = "BlobDataset";             // name of the blob dataset
    string pipelineName = "Adfv2QuickStartPipeline";    // name of the pipeline
  3. Add the following code to the Main method that creates an instance of DataFactoryManagementClient class. You use this object to create a data factory, a linked service, datasets, and a pipeline. You also use this object to monitor the pipeline run details.

    // Authenticate and create a data factory management client
    var context = new AuthenticationContext("https://login.windows.net/" + tenantID);
    ClientCredential cc = new ClientCredential(applicationId, authenticationKey);
    AuthenticationResult result = context.AcquireTokenAsync("https://management.azure.com/", cc).Result;
    ServiceClientCredentials cred = new TokenCredentials(result.AccessToken);
    var client = new DataFactoryManagementClient(cred) { SubscriptionId = subscriptionId };

Create a data factory

Add the following code to the Main method that creates a data factory.

// Create a data factory
Console.WriteLine("Creating data factory " + dataFactoryName + "...");
Factory dataFactory = new Factory
{
    Location = region,
    Identity = new FactoryIdentity()
};
client.Factories.CreateOrUpdate(resourceGroup, dataFactoryName, dataFactory);
Console.WriteLine(SafeJsonConvert.SerializeObject(dataFactory, client.SerializationSettings));

while (client.Factories.Get(resourceGroup, dataFactoryName).ProvisioningState == "PendingCreation")
{
    System.Threading.Thread.Sleep(1000);
}

Create a linked service

Add the following code to the Main method that creates an Azure Storage linked service.

You create linked services in a data factory to link your data stores and compute services to the data factory. In this Quickstart, you only need to create one Azure Storage linked service for both the copy source and sink store, named "AzureStorageLinkedService" in the sample.

// Create an Azure Storage linked service
Console.WriteLine("Creating linked service " + storageLinkedServiceName + "...");

LinkedServiceResource storageLinkedService = new LinkedServiceResource(
    new AzureStorageLinkedService
    {
        ConnectionString = new SecureString("DefaultEndpointsProtocol=https;AccountName=" + storageAccount + ";AccountKey=" + storageKey)
    }
);
client.LinkedServices.CreateOrUpdate(resourceGroup, dataFactoryName, storageLinkedServiceName, storageLinkedService);
Console.WriteLine(SafeJsonConvert.SerializeObject(storageLinkedService, client.SerializationSettings));

Create a dataset

Add the following code to the Main method that creates an Azure blob dataset.

You define a dataset that represents the data to copy from a source to a sink. In this example, this Blob dataset references to the Azure Storage linked service you created in the previous step. The dataset takes a parameter whose value is set in an activity that consumes the dataset. The parameter is used to construct the "folderPath" pointing to where the data resides/stored.

// Create a Azure Blob dataset
Console.WriteLine("Creating dataset " + blobDatasetName + "...");
DatasetResource blobDataset = new DatasetResource(
    new AzureBlobDataset
    {
        LinkedServiceName = new LinkedServiceReference
        {
            ReferenceName = storageLinkedServiceName
        },
        FolderPath = new Expression { Value = "@{dataset().path}" },
        Parameters = new Dictionary<string, ParameterSpecification>
        {
            { "path", new ParameterSpecification { Type = ParameterType.String } }

        }
    }
);
client.Datasets.CreateOrUpdate(resourceGroup, dataFactoryName, blobDatasetName, blobDataset);
Console.WriteLine(SafeJsonConvert.SerializeObject(blobDataset, client.SerializationSettings));

Create a pipeline

Add the following code to the Main method that creates a pipeline with a copy activity.

In this example, this pipeline contains one activity and takes two parameters - input blob path and output blob path. The values for these parameters are set when the pipeline is triggered/run. The copy activity refers to the same blob dataset created in the previous step as input and output. When the dataset is used as an input dataset, input path is specified. And, when the dataset is used as an output dataset, the output path is specified.

// Create a pipeline with a copy activity
Console.WriteLine("Creating pipeline " + pipelineName + "...");
PipelineResource pipeline = new PipelineResource
{
    Parameters = new Dictionary<string, ParameterSpecification>
    {
        { "inputPath", new ParameterSpecification { Type = ParameterType.String } },
        { "outputPath", new ParameterSpecification { Type = ParameterType.String } }
    },
    Activities = new List<Activity>
    {
        new CopyActivity
        {
            Name = "CopyFromBlobToBlob",
            Inputs = new List<DatasetReference>
            {
                new DatasetReference()
                {
                    ReferenceName = blobDatasetName,
                    Parameters = new Dictionary<string, object>
                    {
                        { "path", "@pipeline().parameters.inputPath" }
                    }
                }
            },
            Outputs = new List<DatasetReference>
            {
                new DatasetReference
                {
                    ReferenceName = blobDatasetName,
                    Parameters = new Dictionary<string, object>
                    {
                        { "path", "@pipeline().parameters.outputPath" }
                    }
                }
            },
            Source = new BlobSource { },
            Sink = new BlobSink { }
        }
    }
};
client.Pipelines.CreateOrUpdate(resourceGroup, dataFactoryName, pipelineName, pipeline);
Console.WriteLine(SafeJsonConvert.SerializeObject(pipeline, client.SerializationSettings));

Create a pipeline run

Add the following code to the Main method that triggers a pipeline run.

This code also sets values of inputPath and outputPath parameters specified in pipeline with the actual values of source and sink blob paths.

// Create a pipeline run
Console.WriteLine("Creating pipeline run...");
Dictionary<string, object> parameters = new Dictionary<string, object>
{
    { "inputPath", inputBlobPath },
    { "outputPath", outputBlobPath }
};
CreateRunResponse runResponse = client.Pipelines.CreateRunWithHttpMessagesAsync(resourceGroup, dataFactoryName, pipelineName, parameters: parameters).Result.Body;
Console.WriteLine("Pipeline run ID: " + runResponse.RunId);

Monitor a pipeline run

  1. Add the following code to the Main method to continuously check the status until it finishes copying the data.

    // Monitor the pipeline run
    Console.WriteLine("Checking pipeline run status...");
    PipelineRun pipelineRun;
    while (true)
    {
        pipelineRun = client.PipelineRuns.Get(resourceGroup, dataFactoryName, runResponse.RunId);
        Console.WriteLine("Status: " + pipelineRun.Status);
        if (pipelineRun.Status == "InProgress")
            System.Threading.Thread.Sleep(15000);
        else
            break;
    }
  2. Add the following code to the Main method that retrieves copy activity run details, for example, size of the data read/written.

    // Check the copy activity run details
    Console.WriteLine("Checking copy activity run details...");
    
    List<ActivityRun> activityRuns = client.ActivityRuns.ListByPipelineRun(
    resourceGroup, dataFactoryName, runResponse.RunId, DateTime.UtcNow.AddMinutes(-10), DateTime.UtcNow.AddMinutes(10)).ToList(); 
    if (pipelineRun.Status == "Succeeded")
        Console.WriteLine(activityRuns.First().Output);
    else
        Console.WriteLine(activityRuns.First().Error);
    Console.WriteLine("\nPress any key to exit...");
    Console.ReadKey();

Run the code

Build and start the application, then verify the pipeline execution.

The console prints the progress of creating data factory, linked service, datasets, pipeline, and pipeline run. It then checks the pipeline run status. Wait until you see the copy activity run details with data read/written size. Then, use tools such as Azure Storage explorer to check the blob(s) is copied to "outputBlobPath" from "inputBlobPath" as you specified in variables.

Sample output:

Creating data factory SPv2Factory0907...
{
  "identity": {
    "type": "SystemAssigned"
  },
  "location": "East US"
}
Creating linked service AzureStorageLinkedService...
{
  "properties": {
    "type": "AzureStorage",
    "typeProperties": {
      "connectionString": {
        "value": "DefaultEndpointsProtocol=https;AccountName=<storageAccountName>;AccountKey=<storageAccountKey>",
        "type": "SecureString"
      }
    }
  }
}
Creating dataset BlobDataset...
{
  "properties": {
    "type": "AzureBlob",
    "typeProperties": {
      "folderPath": {
        "value": "@{dataset().path}",
        "type": "Expression"
      }
    },
    "linkedServiceName": {
      "referenceName": "AzureStorageLinkedService",
      "type": "LinkedServiceReference"
    },
    "parameters": {
      "path": {
        "type": "String"
      }
    }
  }
}
Creating pipeline Adfv2QuickStartPipeline...
{
  "properties": {
    "activities": [
      {
        "type": "Copy",
        "typeProperties": {
          "source": {
            "type": "BlobSource"
          },
          "sink": {
            "type": "BlobSink"
          }
        },
        "inputs": [
          {
            "referenceName": "BlobDataset",
            "parameters": {
              "path": "@pipeline().parameters.inputPath"
            },
            "type": "DatasetReference"
          }
        ],
        "outputs": [
          {
            "referenceName": "BlobDataset",
            "parameters": {
              "path": "@pipeline().parameters.outputPath"
            },
            "type": "DatasetReference"
          }
        ],
        "name": "CopyFromBlobToBlob"
      }
    ],
    "parameters": {
      "inputPath": {
        "type": "String"
      },
      "outputPath": {
        "type": "String"
      }
    }
  }
}
Creating pipeline run...
Pipeline run ID: 308d222d-3858-48b1-9e66-acd921feaa09
Checking pipeline run status...
Status: InProgress
Status: InProgress
Checking copy activity run details...
{
    "dataRead": 331452208,
    "dataWritten": 331452208,
    "copyDuration": 23,
    "throughput": 14073.209,
    "errors": [],
    "effectiveIntegrationRuntime": "DefaultIntegrationRuntime (West US)",
    "usedDataIntegrationUnits": 2,
    "billedDuration": 23
}

Press any key to exit...

Verify the output

The pipeline automatically creates the output folder in the adftutorial blob container. Then, it copies the emp.txt file from the input folder to the output folder.

  1. In the Azure portal, on the adftutorial container page, click Refresh to see the output folder.

    Refresh

  2. Click output in the folder list.

  3. Confirm that the emp.txt is copied to the output folder.

    Refresh

Clean up resources

To programmatically, delete the data factory, add the following lines of code to the program:

            Console.WriteLine("Deleting the data factory");
            client.Factories.Delete(resourceGroup, dataFactoryName);

Next steps

The pipeline in this sample copies data from one location to another location in an Azure blob storage. Go through the tutorials to learn about using Data Factory in more scenarios.