Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Stock API and plot function update #22

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
121 changes: 68 additions & 53 deletions README.md

Large diffs are not rendered by default.

402 changes: 201 additions & 201 deletions demo-predicting-stock-prices.ipynb

Large diffs are not rendered by default.

16 changes: 8 additions & 8 deletions project.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
"key": "YOUR_API_KEY", # Claim your free API key here: https://www.alphavantage.co/support/#api-key
"symbol": "IBM",
"outputsize": "full",
"key_adjusted_close": "5. adjusted close",
"key_close_price": "4. close",
},
"data": {
"window_size": 20,
Expand Down Expand Up @@ -51,12 +51,12 @@

def download_data(config):
ts = TimeSeries(key=config["alpha_vantage"]["key"])
data, meta_data = ts.get_daily_adjusted(config["alpha_vantage"]["symbol"], outputsize=config["alpha_vantage"]["outputsize"])
data, meta_data = ts.get_daily(config["alpha_vantage"]["symbol"], outputsize=config["alpha_vantage"]["outputsize"])

data_date = [date for date in data.keys()]
data_date.reverse()

data_close_price = [float(data[date][config["alpha_vantage"]["key_adjusted_close"]]) for date in data.keys()]
data_close_price = [float(data[date][config["alpha_vantage"]["key_close_price"]]) for date in data.keys()]
data_close_price.reverse()
data_close_price = np.array(data_close_price)

Expand All @@ -77,7 +77,7 @@ def download_data(config):
x = np.arange(0,len(xticks))
plt.xticks(x, xticks, rotation='vertical')
plt.title("Daily close price for " + config["alpha_vantage"]["symbol"] + ", " + display_date_range)
plt.grid(b=None, which='major', axis='y', linestyle='--')
plt.grid(which='major', axis='y', linestyle='--')
plt.show()

class Normalizer():
Expand Down Expand Up @@ -145,7 +145,7 @@ def prepare_data_y(x, window_size):
x = np.arange(0,len(xticks))
plt.xticks(x, xticks, rotation='vertical')
plt.title("Daily close prices for " + config["alpha_vantage"]["symbol"] + " - showing training and validation data")
plt.grid(b=None, which='major', axis='y', linestyle='--')
plt.grid(which='major', axis='y', linestyle='--')
plt.legend()
plt.show()

Expand Down Expand Up @@ -316,7 +316,7 @@ def run_epoch(dataloader, is_training=False):
xticks = [data_date[i] if ((i%config["plots"]["xticks_interval"]==0 and (num_data_points-i) > config["plots"]["xticks_interval"]) or i==num_data_points-1) else None for i in range(num_data_points)] # make x ticks nice
x = np.arange(0,len(xticks))
plt.xticks(x, xticks, rotation='vertical')
plt.grid(b=None, which='major', axis='y', linestyle='--')
plt.grid(which='major', axis='y', linestyle='--')
plt.legend()
plt.show()

Expand All @@ -336,7 +336,7 @@ def run_epoch(dataloader, is_training=False):
xticks = [to_plot_data_date[i] if ((i%int(config["plots"]["xticks_interval"]/5)==0 and (len(to_plot_data_date)-i) > config["plots"]["xticks_interval"]/6) or i==len(to_plot_data_date)-1) else None for i in range(len(to_plot_data_date))] # make x ticks nice
xs = np.arange(0,len(xticks))
plt.xticks(xs, xticks, rotation='vertical')
plt.grid(b=None, which='major', axis='y', linestyle='--')
plt.grid(which='major', axis='y', linestyle='--')
plt.legend()
plt.show()

Expand Down Expand Up @@ -375,7 +375,7 @@ def run_epoch(dataloader, is_training=False):
plt.plot(plot_date_test, to_plot_data_y_val_pred, label="Past predicted prices", marker=".", markersize=10, color=config["plots"]["color_pred_val"])
plt.plot(plot_date_test, to_plot_data_y_test_pred, label="Predicted price for next day", marker=".", markersize=20, color=config["plots"]["color_pred_test"])
plt.title("Predicting the close price of the next trading day")
plt.grid(b=None, which='major', axis='y', linestyle='--')
plt.grid(which='major', axis='y', linestyle='--')
plt.legend()
plt.show()

Expand Down
2 changes: 1 addition & 1 deletion step_by_step_code_blocks/add_configs.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
"key": "YOUR_API_KEY", # Claim your free API key here: https://www.alphavantage.co/support/#api-key
"symbol": "IBM",
"outputsize": "full",
"key_adjusted_close": "5. adjusted close",
"key_close_price": "4. close",
},
"data": {
"window_size": 20,
Expand Down
6 changes: 3 additions & 3 deletions step_by_step_code_blocks/get_market_data.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,11 @@
def download_data(config):
ts = TimeSeries(key=config["alpha_vantage"]["key"])
data, meta_data = ts.get_daily_adjusted(config["alpha_vantage"]["symbol"], outputsize=config["alpha_vantage"]["outputsize"])
data, meta_data = ts.get_daily(config["alpha_vantage"]["symbol"], outputsize=config["alpha_vantage"]["outputsize"])

data_date = [date for date in data.keys()]
data_date.reverse()

data_close_price = [float(data[date][config["alpha_vantage"]["key_adjusted_close"]]) for date in data.keys()]
data_close_price = [float(data[date][config["alpha_vantage"]["key_close_price"]]) for date in data.keys()]
data_close_price.reverse()
data_close_price = np.array(data_close_price)

Expand All @@ -26,5 +26,5 @@ def download_data(config):
x = np.arange(0,len(xticks))
plt.xticks(x, xticks, rotation='vertical')
plt.title("Daily close price for " + config["alpha_vantage"]["symbol"] + ", " + display_date_range)
plt.grid(b=None, which='major', axis='y', linestyle='--')
plt.grid(which='major', axis='y', linestyle='--')
plt.show()
2 changes: 1 addition & 1 deletion step_by_step_code_blocks/model_eval.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,6 @@
xticks = [data_date[i] if ((i%config["plots"]["xticks_interval"]==0 and (num_data_points-i) > config["plots"]["xticks_interval"]) or i==num_data_points-1) else None for i in range(num_data_points)] # make x ticks nice
x = np.arange(0,len(xticks))
plt.xticks(x, xticks, rotation='vertical')
plt.grid(b=None, which='major', axis='y', linestyle='--')
plt.grid(which='major', axis='y', linestyle='--')
plt.legend()
plt.show()
2 changes: 1 addition & 1 deletion step_by_step_code_blocks/model_eval_zoomed_in.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,6 @@
xticks = [to_plot_data_date[i] if ((i%int(config["plots"]["xticks_interval"]/5)==0 and (len(to_plot_data_date)-i) > config["plots"]["xticks_interval"]/6) or i==len(to_plot_data_date)-1) else None for i in range(len(to_plot_data_date))] # make x ticks nice
xs = np.arange(0,len(xticks))
plt.xticks(xs, xticks, rotation='vertical')
plt.grid(b=None, which='major', axis='y', linestyle='--')
plt.grid(which='major', axis='y', linestyle='--')
plt.legend()
plt.show()
2 changes: 1 addition & 1 deletion step_by_step_code_blocks/predict_future_prices.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@
plt.plot(plot_date_test, to_plot_data_y_val_pred, label="Past predicted prices", marker=".", markersize=10, color=config["plots"]["color_pred_val"])
plt.plot(plot_date_test, to_plot_data_y_test_pred, label="Predicted price for next day", marker=".", markersize=20, color=config["plots"]["color_pred_test"])
plt.title("Predicted close price of the next trading day")
plt.grid(b=None, which='major', axis='y', linestyle='--')
plt.grid(which='major', axis='y', linestyle='--')
plt.legend()
plt.show()

Expand Down
2 changes: 1 addition & 1 deletion step_by_step_code_blocks/split_train_validate.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,6 @@ def prepare_data_y(x, window_size):
x = np.arange(0,len(xticks))
plt.xticks(x, xticks, rotation='vertical')
plt.title("Daily close prices for " + config["alpha_vantage"]["symbol"] + " - showing training and validation data")
plt.grid(b=None, which='major', axis='y', linestyle='--')
plt.grid(which='major', axis='y', linestyle='--')
plt.legend()
plt.show()