-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e7457b5
commit c270af1
Showing
3 changed files
with
319 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
clear | ||
clc | ||
close all | ||
|
||
Nu = 4; % Number of control inputs (appended gravity term) | ||
Nx = 6; % Number of states | ||
N = 50; % Time horizons to consider | ||
Nq = (N+1)*Nx + N*Nu; % Toal number of decision variables | ||
dt = 0.1; % Time step | ||
m = 5; % Mass of drone | ||
g=9.81; | ||
|
||
% Weights on state deviation and control input | ||
Qx = diag([1000 1000 1000 1 1 1]); | ||
Qn = 10*Qx; | ||
Ru = diag([0.1 0.1 0.01 0]); | ||
|
||
% Bounds on states and controls | ||
xmin = [-inf;-inf;-inf;-inf;-inf;-inf]; | ||
xmax = [inf; inf; inf;inf;inf;inf]; | ||
umin = [-pi/3;-pi/3; 0.5*m*g;1]; | ||
umax = [pi/3; pi/3; 3*m*g; 1]; | ||
|
||
stateBounds = [xmin xmax]; | ||
controlBounds = [umin umax]; | ||
|
||
% Linearized dynamics | ||
Ad = [1 0 0 dt 0 0; | ||
0 1 0 0 dt 0; | ||
0 0 1 0 0 dt; | ||
0 0 0 1 0 0 ; | ||
0 0 0 0 1 0; | ||
0 0 0 0 0 1]; | ||
|
||
Bd = [0 g*dt^2/2 0 0; | ||
-g*dt^2/2 0 0 0; | ||
0 0 dt^2/(2*m) -dt^2*g/2; | ||
0 g*dt 0 0; | ||
-g*dt 0 0 0; | ||
0 0 dt/m -g*dt]; | ||
|
||
% Reference trajectory | ||
xref = cos(0.5*(0:N)); | ||
yref = sin(0.5*(0:N)); | ||
zref = 0.1*(0:N); | ||
|
||
dxref = zeros(1,N+1); | ||
dyref = zeros(1,N+1); | ||
dzref = zeros(1,N+1); | ||
x0 = [xref(1);yref(1);zref(1);dxref(1);dyref(1);dzref(1)]; | ||
refTraj = [xref;yref;zref;dxref;dyref;dzref]; | ||
|
||
% Setup MPC object | ||
mpc = LinearMPC(Ad,Bd,Qx,Qn,Ru,stateBounds,controlBounds,N); | ||
mpc.updateHorizonLength(N); | ||
mpc.setupCostFunction(refTraj); | ||
[H,f,A,b,Aeq,beq,lb,ub] = mpc.getQuadprogMatrices(x0,refTraj); | ||
|
||
[Qout,fval] = quadprog(H,f,A,b,Aeq,beq,lb,ub); | ||
|
||
xend = Nx*(N+1); | ||
xout = Qout(1:Nx:xend); | ||
yout = Qout(2:Nx:xend); | ||
zout = Qout(3:Nx:xend); | ||
dxout = Qout(4:Nx:xend); | ||
dyout = Qout(5:Nx:xend); | ||
dzout = Qout(6:Nx:xend); | ||
|
||
ustart = xend+1; | ||
u1out = Qout(ustart+0:Nu:end); | ||
u2out = Qout(ustart+1:Nu:end); | ||
u3out = Qout(ustart+2:Nu:end); | ||
u4out = Qout(ustart+3:Nu:end); | ||
% u5out = Qout(ustart+4:Nu:end); | ||
|
||
figure | ||
plot3(xref,yref,zref, 'b*-') | ||
hold on | ||
plot3(xout,yout,zout, 'r*-') | ||
grid on | ||
xlabel('x') | ||
ylabel('y') | ||
zlabel('z') | ||
title('Drone Trajectory') | ||
legend('Reference', 'MPC') | ||
xlim([-5 5]) | ||
ylim([-5 5]) | ||
zlim([0 5]) | ||
|
||
figure | ||
subplot(1,2,1) | ||
plot(u3out) | ||
title('Thrust') | ||
ylim([umin(3), umax(3)]) | ||
|
||
subplot(1,2,2) | ||
plot(zref) | ||
hold on | ||
plot(zout) | ||
title('Z tracking') | ||
legend('Reference', 'MPC') | ||
|
||
figure | ||
subplot(1,2,1) | ||
plot(u1out) | ||
title('Ground frame roll') | ||
ylim([umin(1), umax(1)]) | ||
|
||
subplot(1,2,2) | ||
plot(u2out) | ||
title('Ground frame pitch') | ||
ylim([umin(2), umax(2)]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
Nu = 4; % Number of control inputs (appended gravity term) | ||
Nx = 6; % Number of states | ||
N = 50; % Time horizons to consider | ||
Nq = (N+1)*Nx + N*Nu; % Toal number of decision variables | ||
dt = 0.1; % Time step | ||
m = 5; % Mass of drone | ||
g=9.81; | ||
|
||
% Weights on state deviation and control input | ||
Qx = diag([100 100 1000 1 1 1]); | ||
Qn = 10*Qx; | ||
Ru = diag([1 1 0.01 0]); | ||
|
||
% Bounds on states and controls | ||
xmin = [-inf;-inf;-inf;-inf;-inf;-inf]; | ||
xmax = [inf; inf; inf;inf;inf;inf]; | ||
umin = [-pi/6;-pi/6; 0.5*m*g;1]; | ||
umax = [pi/6; pi/6; 3*m*g; 1]; | ||
|
||
stateBounds = [xmin xmax]; | ||
controlBounds = [umin umax]; | ||
|
||
% Linearized dynamics | ||
Ad = [1 0 0 dt 0 0; | ||
0 1 0 0 dt 0; | ||
0 0 1 0 0 dt; | ||
0 0 0 1 0 0 ; | ||
0 0 0 0 1 0; | ||
0 0 0 0 0 1]; | ||
|
||
Bd = [0 g*dt^2/2 0 0; | ||
-g*dt^2/2 0 0 0; | ||
0 0 dt^2/(2*m) -dt^2*g/2; | ||
0 g*dt 0 0; | ||
-g*dt 0 0 0; | ||
0 0 dt/m -g*dt]; | ||
|
||
% Reference trajectory | ||
xref = cos(0.5*(0:N)); | ||
yref = sin(0.5*(0:N)); | ||
zref = 0.1*(0:N); | ||
|
||
dxref = zeros(1,N+1); | ||
dyref = zeros(1,N+1); | ||
dzref = zeros(1,N+1); | ||
x0 = [xref(1);yref(1);zref(1);dxref(1);dyref(1);dzref(1)]; | ||
refTraj = [xref;yref;zref;dxref;dyref;dzref]; | ||
|
||
% Setup MPC object | ||
mpc = LinearMPC(Ad,Bd,Qx,Qn,Ru,stateBounds,controlBounds,N); | ||
mpc.updateHorizonLength(N); | ||
mpc.setupCostFunction(refTraj); | ||
[H,f,A,b,Aeq,beq,lb,ub] = mpc.getQuadprogMatrices(x0,refTraj); | ||
|
||
[Qout,fval] = quadprog(H,f,A,b,Aeq,beq,lb,ub); | ||
|
||
xend = Nx*(N+1); | ||
xout = Qout(1:Nx:xend); | ||
yout = Qout(2:Nx:xend); | ||
zout = Qout(3:Nx:xend); | ||
dxout = Qout(4:Nx:xend); | ||
dyout = Qout(5:Nx:xend); | ||
dzout = Qout(6:Nx:xend); | ||
|
||
ustart = xend+1; | ||
u1out = Qout(ustart+0:Nu:end); | ||
u2out = Qout(ustart+1:Nu:end); | ||
u3out = Qout(ustart+2:Nu:end); | ||
u4out = Qout(ustart+3:Nu:end); | ||
u5out = Qout(ustart+4:Nu:end); | ||
|
||
figure | ||
plot3(xref,yref,zref, 'b*-') | ||
hold on | ||
plot3(xout,yout,zout, 'r*-') | ||
grid on | ||
xlabel('x') | ||
ylabel('y') | ||
zlabel('z') | ||
title('Drone Trajectory') | ||
legend('Reference', 'MPC') | ||
xlim([-5 5]) | ||
ylim([-5 5]) | ||
zlim([0 5]) | ||
|
||
|
||
figure | ||
subplot(1,2,1) | ||
plot(u3out) | ||
title('Thrust') | ||
ylim([umin(3), umax(3)]) | ||
|
||
subplot(1,2,2) | ||
plot(zref) | ||
hold on | ||
plot(zout) | ||
title('Z tracking') | ||
legend('Reference', 'MPC') | ||
|
||
figure | ||
subplot(1,2,1) | ||
plot(u1out) | ||
title('Ground frame roll') | ||
ylim([umin(1), umax(1)]) | ||
|
||
subplot(1,2,2) | ||
plot(u2out) | ||
title('Ground frame pitch') | ||
ylim([umin(2), umax(2)]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
Nu = 4; % Number of control inputs (appended gravity term) | ||
Nx = 6; % Number of states | ||
N = 5; % Time horizons to consider | ||
Nq = (N+1)*Nx + N*Nu; % Toal number of decision variables | ||
dt = 0.1; % Time step | ||
m = 5; % Mass of drone | ||
g=9.81; | ||
|
||
% Weights on state deviation and control input | ||
Qx = diag([100 100 1000 1 1 1]); | ||
Qn = 10*Qx; | ||
Ru = diag([1 1 0.01 0]); | ||
|
||
% Bounds on states and controls | ||
xmin = [-inf;-inf;-inf;-inf;-inf;-inf]; | ||
xmax = [inf; inf; inf;inf;inf;inf]; | ||
umin = [-pi/6;-pi/6; 0.5*m*g;1]; | ||
umax = [pi/6; pi/6; 3*m*g; 1]; | ||
|
||
stateBounds = [xmin xmax]; | ||
controlBounds = [umin umax]; | ||
|
||
% Linearized dynamics | ||
Ad = [1 0 0 dt 0 0; | ||
0 1 0 0 dt 0; | ||
0 0 1 0 0 dt; | ||
0 0 0 1 0 0 ; | ||
0 0 0 0 1 0; | ||
0 0 0 0 0 1]; | ||
|
||
Bd = [0 g*dt^2/2 0 0; | ||
-g*dt^2/2 0 0 0; | ||
0 0 dt^2/(2*m) -dt^2*g/2; | ||
-9.8*dt 0 0 0 0; | ||
0 9.8*dt 0 0 0; | ||
0 0 0 dt/m -9.8*dt]; | ||
|
||
% Reference trajectory | ||
xref = cos(0.5*(0:N)); | ||
yref = sin(0.5*(0:N)); | ||
zref = 0.1*(0:N); | ||
|
||
dxref = zeros(1,N+1); | ||
dyref = zeros(1,N+1); | ||
dzref = zeros(1,N+1); | ||
x0 = [xref(1);yref(1);zref(1);dxref(1);dyref(1);dzref(1)]; | ||
refTraj = [xref;yref;zref;dxref;dyref;dzref]; | ||
|
||
% Setup MPC object | ||
mpc = LinearMPC(Ad,Bd,Qx,Qn,Ru,stateBounds,controlBounds,N); | ||
mpc.updateHorizonLength(N); | ||
mpc.setupCostFunction(refTraj); | ||
[H,f,A,b,Aeq,beq,lb,ub] = mpc.getQuadprogMatrices(x0,refTraj); | ||
|
||
[Qout,fval] = quadprog(H,f,A,b,Aeq,beq,lb,ub); | ||
|
||
xend = Nx*(N+1); | ||
xout = Qout(1:Nx:xend); | ||
yout = Qout(2:Nx:xend); | ||
zout = Qout(3:Nx:xend); | ||
dxout = Qout(4:Nx:xend); | ||
dyout = Qout(5:Nx:xend); | ||
dzout = Qout(6:Nx:xend); | ||
|
||
ustart = xend+1; | ||
u1out = Qout(ustart+0:Nu:end); | ||
u2out = Qout(ustart+1:Nu:end); | ||
u3out = Qout(ustart+2:Nu:end); | ||
u4out = Qout(ustart+3:Nu:end); | ||
u5out = Qout(ustart+4:Nu:end); | ||
|
||
figure | ||
plot3(xref,yref,zref, 'b*-') | ||
hold on | ||
plot3(xout,yout,zout, 'r*-') | ||
grid on | ||
xlabel('x') | ||
ylabel('y') | ||
zlabel('z') | ||
title('Drone Trajectory') | ||
legend('Reference', 'MPC') | ||
xlim([-5 5]) | ||
ylim([-5 5]) | ||
zlim([0 5]) | ||
|
||
figure | ||
subplot(1,2,1) | ||
plot(u4out) | ||
title('Thrust') | ||
ylim([umin(4), umax(4)]) | ||
|
||
subplot(1,2,2) | ||
plot(zref) | ||
hold on | ||
plot(zout) | ||
title('Z tracking') | ||
legend('Reference', 'MPC') | ||
|