Skip to content

Commit

Permalink
Update generated Python Op docs.
Browse files Browse the repository at this point in the history
Change: 122673775
  • Loading branch information
A. Unique TensorFlower authored and tensorflower-gardener committed May 18, 2016
1 parent 0eb9af8 commit 06ba961
Show file tree
Hide file tree
Showing 3 changed files with 482 additions and 0 deletions.
243 changes: 243 additions & 0 deletions tensorflow/g3doc/api_docs/python/contrib.distributions.md
Original file line number Diff line number Diff line change
Expand Up @@ -1322,6 +1322,249 @@ Sample `n` observations from the Gaussian Distributions.



- - -

### `class tf.contrib.distributions.StudentT` {#StudentT}

Student's t distribution with degree-of-freedom parameter df.

#### Mathematical details

The PDF of this distribution is:

`f(t) = gamma((df+1)/2)/sqrt(df*pi)/gamma(df/2)*(1+t^2/df)^(-(df+1)/2)`

#### Examples

Examples of initialization of one or a batch of distributions.

```python
# Define a single scalar Student t distribution.
single_dist = tf.contrib.distributions.StudentT(df=3)

# Evaluate the pdf at 1, returning a scalar Tensor.
single_dist.pdf(1.)

# Define a batch of two scalar valued Student t's.
# The first has degrees of freedom 2, mean 1, and scale 11.
# The second 3, 2 and 22.
multi_dist = tf.contrib.distributions.StudentT(df=[2, 3],
mu=[1, 2.],
sigma=[11, 22.])

# Evaluate the pdf of the first distribution on 0, and the second on 1.5,
# returning a length two tensor.
multi_dist.pdf([0, 1.5])

# Get 3 samples, returning a 3 x 2 tensor.
multi_dist.sample(3)
```

Arguments are broadcast when possible.

```python
# Define a batch of two Student's t distributions.
# Both have df 2 and mean 1, but different scales.
dist = tf.contrib.distributions.StudentT(df=2, mu=1, sigma=[11, 22.])

# Evaluate the pdf of both distributions on the same point, 3.0,
# returning a length 2 tensor.
dist.pdf(3.0)
```
- - -

#### `tf.contrib.distributions.StudentT.__init__(df, mu, sigma, name='StudentT')` {#StudentT.__init__}

Construct Student's t distributions.

The distributions have degree of freedom `df`, mean `mu`, and scale `sigma`.

The parameters `df`, `mu`, and `sigma` must be shaped in a way that supports
broadcasting (e.g. `df + mu + sigma` is a valid operation).

##### Args:


* <b>`df`</b>: `float` or `double` tensor, the degrees of freedom of the
distribution(s). `df` must contain only positive values.
* <b>`mu`</b>: `float` or `double` tensor, the means of the distribution(s).
* <b>`sigma`</b>: `float` or `double` tensor, the scaling factor for the
distribution(s). `sigma` must contain only positive values.
Note that `sigma` is not the standard deviation of this distribution.
* <b>`name`</b>: The name to give Ops created by the initializer.

##### Raises:


* <b>`TypeError`</b>: if mu and sigma are different dtypes.


- - -

#### `tf.contrib.distributions.StudentT.batch_shape(name='batch_shape')` {#StudentT.batch_shape}




- - -

#### `tf.contrib.distributions.StudentT.cdf(value, name='cdf')` {#StudentT.cdf}

Cumulative distribution function.


- - -

#### `tf.contrib.distributions.StudentT.df` {#StudentT.df}

Degrees of freedom in these Student's t distribution(s).


- - -

#### `tf.contrib.distributions.StudentT.dtype` {#StudentT.dtype}




- - -

#### `tf.contrib.distributions.StudentT.entropy(name='entropy')` {#StudentT.entropy}

The entropy of Student t distribution(s).

##### Args:


* <b>`name`</b>: The name to give this op.

##### Returns:


* <b>`entropy`</b>: tensor of dtype `dtype`, the entropy.


- - -

#### `tf.contrib.distributions.StudentT.event_shape(name='event_shape')` {#StudentT.event_shape}




- - -

#### `tf.contrib.distributions.StudentT.get_batch_shape()` {#StudentT.get_batch_shape}




- - -

#### `tf.contrib.distributions.StudentT.get_event_shape()` {#StudentT.get_event_shape}




- - -

#### `tf.contrib.distributions.StudentT.log_cdf(value, name='log_cdf')` {#StudentT.log_cdf}

Log CDF.


- - -

#### `tf.contrib.distributions.StudentT.log_pdf(x, name='log_pdf')` {#StudentT.log_pdf}

Log pdf of observations in `x` under these Student's t-distribution(s).

##### Args:


* <b>`x`</b>: tensor of dtype `dtype`, must be broadcastable with `mu` and `df`.
* <b>`name`</b>: The name to give this op.

##### Returns:


* <b>`log_pdf`</b>: tensor of dtype `dtype`, the log-PDFs of `x`.


- - -

#### `tf.contrib.distributions.StudentT.mean` {#StudentT.mean}




- - -

#### `tf.contrib.distributions.StudentT.mu` {#StudentT.mu}

Locations of these Student's t distribution(s).


- - -

#### `tf.contrib.distributions.StudentT.name` {#StudentT.name}




- - -

#### `tf.contrib.distributions.StudentT.pdf(x, name='pdf')` {#StudentT.pdf}

The PDF of observations in `x` under these Student's t distribution(s).

##### Args:


* <b>`x`</b>: tensor of dtype `dtype`, must be broadcastable with `df`, `mu`, and
`sigma`.
* <b>`name`</b>: The name to give this op.

##### Returns:


* <b>`pdf`</b>: tensor of dtype `dtype`, the pdf values of `x`.


- - -

#### `tf.contrib.distributions.StudentT.sample(n, seed=None, name='sample')` {#StudentT.sample}

Sample `n` observations from the Student t Distributions.

##### Args:


* <b>`n`</b>: `Scalar`, type int32, the number of observations to sample.
* <b>`seed`</b>: Python integer, the random seed.
* <b>`name`</b>: The name to give this op.

##### Returns:


* <b>`samples`</b>: a `Tensor` of shape `(n,) + self.batch_shape + self.event_shape`
with values of type `self.dtype`.


- - -

#### `tf.contrib.distributions.StudentT.sigma` {#StudentT.sigma}

Scaling factors of these Student's t distribution(s).


- - -

#### `tf.contrib.distributions.StudentT.variance` {#StudentT.variance}





- - -

### `class tf.contrib.distributions.Uniform` {#Uniform}
Expand Down
Loading

0 comments on commit 06ba961

Please sign in to comment.