Skip to content

Commit

Permalink
[TEST](indice_convolution_forward):add api check cases for indice_con…
Browse files Browse the repository at this point in the history
…volution_forward (Cambricon#428)

Co-authored-by: wangxin1 <[email protected]>
  • Loading branch information
Shin-Wang and wangxin1 authored Feb 23, 2023
1 parent 9925cf0 commit 10e3b15
Show file tree
Hide file tree
Showing 3 changed files with 1,046 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,342 @@
/*************************************************************************
* Copyright (C) [2022] by Cambricon, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*************************************************************************/
#include <iostream>
#include <vector>
#include <string>
#include <tuple>
#include "api_test_tools.h"
#include "core/context.h"
#include "core/tensor.h"
#include "core/logging.h"
#include "gtest/gtest.h"
#include "mlu_op.h"

namespace mluopapitest {
class indice_convolution_forward : public testing::Test {
public:
void setParam(bool handle, bool features_desc, bool features,
bool filters_desc, bool filters, bool indice_pairs_desc,
bool indice_pairs, bool features_out_desc, bool features_out,
bool indice_num, bool worksapce) {
if (handle) {
MLUOP_CHECK(mluOpCreate(&handle_));
}

if (features_desc) {
MLUOP_CHECK(mluOpCreateTensorDescriptor(&features_desc_));
std::vector<int> features_dims{2, 7};
MLUOP_CHECK(mluOpSetTensorDescriptor(features_desc_, MLUOP_LAYOUT_ARRAY,
MLUOP_DTYPE_FLOAT, 2,
features_dims.data()));
}

if (features) {
if (features_desc) {
GTEST_CHECK(
CNRT_RET_SUCCESS ==
cnrtMalloc(&features_, mluOpGetTensorElementNum(features_desc_) *
mluOpDataTypeBytes(MLUOP_DTYPE_FLOAT)));
} else {
GTEST_CHECK(
CNRT_RET_SUCCESS ==
cnrtMalloc(&features_, 64 * mluOpDataTypeBytes(MLUOP_DTYPE_FLOAT)));
}
}

if (filters_desc) {
MLUOP_CHECK(mluOpCreateTensorDescriptor(&filters_desc_));
std::vector<int> filters_dims{9, 2, 2, 2, 7};
MLUOP_CHECK(mluOpSetTensorDescriptor(filters_desc_, MLUOP_LAYOUT_NDHWC,
MLUOP_DTYPE_FLOAT, 5,
filters_dims.data()));
}

if (filters) {
if (filters_desc) {
GTEST_CHECK(
CNRT_RET_SUCCESS ==
cnrtMalloc(&filters_, mluOpGetTensorElementNum(filters_desc_) *
mluOpDataTypeBytes(MLUOP_DTYPE_FLOAT)));
} else {
GTEST_CHECK(
CNRT_RET_SUCCESS ==
cnrtMalloc(&filters_, 64 * mluOpDataTypeBytes(MLUOP_DTYPE_FLOAT)));
}
}

if (indice_pairs_desc) {
MLUOP_CHECK(mluOpCreateTensorDescriptor(&indice_pairs_desc_));
std::vector<int> indice_pairs_dims{8, 2, 2};
MLUOP_CHECK(mluOpSetTensorDescriptor(
indice_pairs_desc_, MLUOP_LAYOUT_ARRAY, MLUOP_DTYPE_INT32, 3,
indice_pairs_dims.data()));
}

if (indice_pairs) {
if (indice_pairs_desc) {
GTEST_CHECK(CNRT_RET_SUCCESS ==
cnrtMalloc(&indice_pairs_,
mluOpGetTensorElementNum(indice_pairs_desc_) *
mluOpDataTypeBytes(MLUOP_DTYPE_FLOAT)));
} else {
GTEST_CHECK(CNRT_RET_SUCCESS ==
cnrtMalloc(&indice_pairs_,
64 * mluOpDataTypeBytes(MLUOP_DTYPE_FLOAT)));
}
}

if (features_out_desc) {
MLUOP_CHECK(mluOpCreateTensorDescriptor(&features_out_desc_));
std::vector<int> features_out_dims{10, 9};
MLUOP_CHECK(mluOpSetTensorDescriptor(
features_out_desc_, MLUOP_LAYOUT_ARRAY, MLUOP_DTYPE_FLOAT, 2,
features_out_dims.data()));
}

if (features_out) {
if (features_out_desc) {
GTEST_CHECK(CNRT_RET_SUCCESS ==
cnrtMalloc(&features_out_,
mluOpGetTensorElementNum(features_out_desc_) *
mluOpDataTypeBytes(MLUOP_DTYPE_FLOAT)));
} else {
GTEST_CHECK(CNRT_RET_SUCCESS ==
cnrtMalloc(&features_out_,
64 * mluOpDataTypeBytes(MLUOP_DTYPE_FLOAT)));
}
}

std::vector<int> num = {1, 1, 1, 1, 1, 1, 1, 1};
for (int i = 0; i < num.size(); i++) {
if (indice_num) {
indice_num_.push_back(num[i]);
}
}

if (worksapce) {
GTEST_CHECK(CNRT_RET_SUCCESS == cnrtMalloc(&workspace_, workspace_size_));
}
}
mluOpStatus_t compute() {
mluOpStatus_t status = mluOpIndiceConvolutionForward(
handle_, features_desc_, features_, filters_desc_, filters_,
indice_pairs_desc_, indice_pairs_, indice_num_.data(), num_act_out_,
inverse_, sub_m_, workspace_, workspace_size_, features_out_desc_,
features_out_);
destroy();
return status;
}

protected:
void destroy() {
if (handle_) {
CNRT_CHECK(cnrtQueueSync(handle_->queue));
VLOG(4) << "Destroy handle";
MLUOP_CHECK(mluOpDestroy(handle_));
handle_ = nullptr;
}

if (features_desc_) {
VLOG(4) << "Destroy features_desc";
MLUOP_CHECK(mluOpDestroyTensorDescriptor(features_desc_));
features_desc_ = nullptr;
}

if (features_) {
VLOG(4) << "Destroy features";
GTEST_CHECK(CNRT_RET_SUCCESS == cnrtFree(features_));
features_ = nullptr;
}

if (filters_desc_) {
VLOG(4) << "Destroy filters_desc";
MLUOP_CHECK(mluOpDestroyTensorDescriptor(filters_desc_));
filters_desc_ = nullptr;
}

if (filters_) {
VLOG(4) << "Destroy filters";
GTEST_CHECK(CNRT_RET_SUCCESS == cnrtFree(filters_));
filters_ = nullptr;
}

if (indice_pairs_desc_) {
VLOG(4) << "Destroy indice_pairs_desc";
MLUOP_CHECK(mluOpDestroyTensorDescriptor(indice_pairs_desc_));
indice_pairs_desc_ = nullptr;
}

if (indice_pairs_) {
VLOG(4) << "Destroy indice_pairs";
GTEST_CHECK(CNRT_RET_SUCCESS == cnrtFree(indice_pairs_));
indice_pairs_ = nullptr;
}

if (workspace_) {
VLOG(4) << "Destroy workspace";
GTEST_CHECK(CNRT_RET_SUCCESS == cnrtFree(workspace_));
workspace_ = nullptr;
}

if (features_out_desc_) {
VLOG(4) << "Destroy features_out_desc";
MLUOP_CHECK(mluOpDestroyTensorDescriptor(features_out_desc_));
features_out_desc_ = nullptr;
}

if (features_out_) {
VLOG(4) << "Destroy features_out";
GTEST_CHECK(CNRT_RET_SUCCESS == cnrtFree(features_out_));
features_out_ = nullptr;
}
}

private:
mluOpHandle_t handle_ = nullptr;
mluOpTensorDescriptor_t features_desc_ = nullptr;
void *features_ = nullptr;
mluOpTensorDescriptor_t filters_desc_ = nullptr;
void *filters_ = nullptr;
mluOpTensorDescriptor_t indice_pairs_desc_ = nullptr;
void *indice_pairs_ = nullptr;
std::vector<int64_t> indice_num_;
int64_t num_act_out_ = 10;
int64_t inverse_ = 0;
int64_t sub_m_ = 0;
void *workspace_ = nullptr;
size_t workspace_size_ = 64;
mluOpTensorDescriptor_t features_out_desc_ = nullptr;
void *features_out_ = nullptr;
};

TEST_F(indice_convolution_forward, BAD_PARAM_handle_null) {
try {
setParam(false, true, true, true, true, true, true, true, true, true, true);
EXPECT_TRUE(MLUOP_STATUS_BAD_PARAM == compute());
} catch (std::exception &e) {
FAIL() << "MLUOPAPIGTEST: catched " << e.what()
<< " in indice_convolution_forward";
}
}

TEST_F(indice_convolution_forward, BAD_PARAM_features_desc_null) {
try {
setParam(true, false, true, true, true, true, true, true, true, true, true);
EXPECT_TRUE(MLUOP_STATUS_BAD_PARAM == compute());
} catch (std::exception &e) {
FAIL() << "MLUOPAPIGTEST: catched " << e.what()
<< " in indice_convolution_forward";
}
}

TEST_F(indice_convolution_forward, BAD_PARAM_features_null) {
try {
setParam(true, true, false, true, true, true, true, true, true, true, true);
EXPECT_TRUE(MLUOP_STATUS_BAD_PARAM == compute());
} catch (std::exception &e) {
FAIL() << "MLUOPAPIGTEST: catched " << e.what()
<< " in indice_convolution_forward";
}
}

TEST_F(indice_convolution_forward, BAD_PARAM_filters_desc_null) {
try {
setParam(true, true, true, false, true, true, true, true, true, true, true);
EXPECT_TRUE(MLUOP_STATUS_BAD_PARAM == compute());
} catch (std::exception &e) {
FAIL() << "MLUOPAPIGTEST: catched " << e.what()
<< " in indice_convolution_forward";
}
}

TEST_F(indice_convolution_forward, BAD_PARAM_filters_null) {
try {
setParam(true, true, true, true, false, true, true, true, true, true, true);
EXPECT_TRUE(MLUOP_STATUS_BAD_PARAM == compute());
} catch (std::exception &e) {
FAIL() << "MLUOPAPIGTEST: catched " << e.what()
<< " in indice_convolution_forward";
}
}

TEST_F(indice_convolution_forward, BAD_PARAM_indice_pairs_desc_null) {
try {
setParam(true, true, true, true, true, false, true, true, true, true, true);
EXPECT_TRUE(MLUOP_STATUS_BAD_PARAM == compute());
} catch (std::exception &e) {
FAIL() << "MLUOPAPIGTEST: catched " << e.what()
<< " in indice_convolution_forward";
}
}

TEST_F(indice_convolution_forward, BAD_PARAM_indice_pairs_null) {
try {
setParam(true, true, true, true, true, true, false, true, true, true, true);
EXPECT_TRUE(MLUOP_STATUS_BAD_PARAM == compute());
} catch (std::exception &e) {
FAIL() << "MLUOPAPIGTEST: catched " << e.what()
<< " in indice_convolution_forward";
}
}

TEST_F(indice_convolution_forward, BAD_PARAM_features_out_desc_null) {
try {
setParam(true, true, true, true, true, true, true, false, true, true, true);
EXPECT_TRUE(MLUOP_STATUS_BAD_PARAM == compute());
} catch (std::exception &e) {
FAIL() << "MLUOPAPIGTEST: catched " << e.what()
<< " in indice_convolution_forward";
}
}

TEST_F(indice_convolution_forward, BAD_PARAM_features_out_null) {
try {
setParam(true, true, true, true, true, true, true, true, false, true, true);
EXPECT_TRUE(MLUOP_STATUS_BAD_PARAM == compute());
} catch (std::exception &e) {
FAIL() << "MLUOPAPIGTEST: catched " << e.what()
<< " in indice_convolution_forward";
}
}

TEST_F(indice_convolution_forward, BAD_PARAM_indice_num_null) {
try {
setParam(true, true, true, true, true, true, true, true, true, false, true);
EXPECT_TRUE(MLUOP_STATUS_BAD_PARAM == compute());
} catch (std::exception &e) {
FAIL() << "MLUOPAPIGTEST: catched " << e.what()
<< " in indice_convolution_forward";
}
}

TEST_F(indice_convolution_forward, BAD_PARAM_workspace_null) {
try {
setParam(true, true, true, true, true, true, true, true, true, true, false);
EXPECT_TRUE(MLUOP_STATUS_BAD_PARAM == compute());
} catch (std::exception &e) {
FAIL() << "MLUOPAPIGTEST: catched " << e.what()
<< " in indice_convolution_forward";
}
}

} // namespace mluopapitest
Loading

0 comments on commit 10e3b15

Please sign in to comment.